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In the supplementary material, we show a comparison on
reflection alignment with an existing alignment approach,
introduce more details about our method, provide an abla-
tion study on transmission recovery, and conduct more com-
prehensive comparisons with state-of-the-art reflection re-
moval methods. We further provide a demonstration video
to show two user scenarios of using a panoramic camera
and a mobile phone.

6. Comparison on Reflection Alignment
In this section, we conduct experiments on reflection

alignment comparing to an two-step alignment approach
RANSAC-Flow [4] (denoted as ‘RF20’ for brevity), corre-
sponding to footnote 1 in the paper. In panoramic image re-
flection removal, we need to align the panoramic reflection
scene RP and the mixture image M, which have different
content as M is the combination of the transmission scene
T and the glass-reflected image RG. As shown in Figure 9,
since RF20 [4] is developed to work on consistent image
content without the impact of glass, it mismatches image
features of RP and T, resulting in its failure in our case. Af-
ter taking the photometric and geometric discrepancy into
consideration, our coarse-to-fine alignment algorithm cor-
rectly matches image features of RP and RG to achieve
more precise alignment, which provides reliable guidance
for the following transmission recovery.

7. Analysis about Scale Discrepancy
In this section, we provide more details about the scale

discrepancy between the reflection image RG and the re-
flection scene RP, which plays a significant role in their
geometric misalignment, corresponding to footnote 2 in the
paper. As shown in Figure 10, patches with the same size
are extracted in both RG and RP, however, an object (e.g.,
plant) can appear with quite different spatial scales in these

#Equal contribution. ∗Corresponding author.

Mixture image

Reflection scene

Our coarse Our fine

RF20 coarse RF20 fine

Input Reflection alignment result

Figure 9. Qualitative comparison of our coarse-to-fine reflec-
tion alignment algorithm with the two-step alignment approach
RF20 [4] on PORTABLE dataset.

two images. We define the above scale discrepancy through
scalar s, implying that objects of RP can match the scale of
their corresponding ones in RG if the image size of RG is
reduced by such scalar. According to the camera imaging
model, different distances from the camera to the glass plate
and the reflection scene with different FoV (field of view)
between RG and RP influence the scale discrepancy, which
can be summarized as followed:

s =
dcr + 2dcg

dcr
· tan(φRG/2)

tan(φRP
/2)

, (10)

where dcg and dcr represents distances from the camera to
the glass plate and the reflection scene, with φRG

and φRP

to be the FoV of RG and RP, respectively, as illustrated in
Figure 10(a).

In the geometric alignment procedure of our method, we
employ an ergodic searching and matching process, where
the sizes of slide windows are varied with s (to be sh× sw
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Figure 10. (a) Camera model of capturing a scene containing a
glass plate by a panoramic camera. (b) Captured panoramic image.
(c) Glass-reflected reflection image RG, which is ‘captured’ by
the virtual camera. (d) Illustration of the geometric misalignment.
(e) Panoramic reflection scene RP, which is captured by the real
camera.

as in Section 3.2.1 of the main paper). In practice, dcr is
generally much larger than dcg , then we assume that dcr is
at least four times larger than dcg . Meanwhile, as the initial
image extraction step generates M with user interaction and
the glass plate is usually in a limited size, the FoV of the
cropped M is generally between 45◦ and 60◦. Therefore,
in our setup, s ranges from 0.4 to 0.85, and we sample s
with the step of 0.05 for the ergodic searching and matching
procedure to balance the potential scale discrepancy range
and the computational cost.

8. Details about Training Data Synthesizing
In this section, we introduce more details about training

data synthesizing, corresponding to footnote 3 in the pa-
per. Transmission scenes and reflection scenes are selected
from SUN RGB-D [5] and Cityscapes [1], respectively, to
cover various real scenarios. Reflection images are gener-
ated from reflection scenes, considering geometric and pho-
tometric misalignment in real data. For geometric misalign-
ment, we randomly sample s in the range of [0.4, 0.85] ac-
cording to the analysis in Section 7. Then we randomly crop
a patch with size of sh × sw (h and w are the height and
width of the reflection scene) from the reflection scene to
simulate the spatial translation. Afterwards, a random per-
spective transformation is conducted to imitate visual paral-
lax. For photometric misalignment, we utilize the transfor-
mation function estimated from [6] as mentioned in Section
3.2.2 of the paper, to simulate the photometric discrepancy
between RP and RG. Finally, mixture images are gener-
ated with transmission scenes and reflection images by the

Table 3. Quantitative comparison of estimated reflection images
between our method and several state-of-the-art reflection removal
methods including IBCLN [3], KH20 [2], and CoRRN [7] on our
PORTABLE dataset. ↑ (↓) indicates larger (smaller) values are bet-
ter. Bold numbers indicate the best performing results.

Method
Error Metric

PSNR↑ SSIM↑ NCC↑ LMSE↓
Ours 20.790 0.649 0.809 0.071
ICBLN [3] 16.675 0.497 0.473 0.122
KH20 [2] 17.295 0.564 0.453 0.080
CoRRN [7] 15.127 0.457 0.467 0.107

Table 4. Quantitative comparison between our transmission net-
work and its variant w/o-Saliency on our PORTABLE dataset.

Method
Error Metric

PSNR↑ SSIM↑ NCC↑ LMSE↓
Ours 23.986 0.749 0.926 0.021
w/o-Saliency 23.348 0.741 0.917 0.021

same blending formulation in [7].

9. Evaluation on Reflection Recovery
In this section, we compare the estimated reflection im-

ages by our reflection refinement network with several state-
of-the-art reflection removal methods including IBCLN [3],
KH20 [2], and CoRRN [7] in both quantitative results and
visual quality on our PORTABLE dataset, corresponding to
footnote 4 in the paper. The comparison does not include
another state-of-the-art method ERRNet [8] as it only esti-
mates the transmission scene. As shown in Table 3, com-
paring to other single-image methods, quantitative results
demonstrate the prominent advantage of our method on re-
flection image estimation, thanks to the content information
about reflection scenes from the panoramic image. As can
be observed from visual quality results in Figure 11, our
method is able to estimate distinct and precise reflection im-
ages, while other methods generate results with low image
quality and incorrect artifacts from transmission scenes due
to the content ambiguity, which further demonstrates the ef-
fectiveness of our reflection refinement network.

10. Ablation Study on Transmission Recovery
In this section, we conduct an ablation study on our

transmission recovery network, corresponding to footnote 6
in the paper. As introduced in Section 3.4, the content infor-
mation of the reflection scene is used as the saliency infor-
mation to indicate reflection regions in M and guide reflec-
tion removal (through the attention map) in our transmission
network. To validate the effectiveness of such guidance, we
compare the transmission network with its variant denoted



as ‘w/o-Saliency’ which removes attention maps but con-
catenates features of RG and M directly. Quantitative re-
sults in Table 4 show advantages of the attention map guid-
ance strategy, and Figure 12 suggests that the saliency infor-
mation from reflection images helps generate more pleasant
results in visual quality, which is mainly due to the non-
linear relation of T, M, and RG.

11. More Visual Quality Results
In this section, we provide more qualitative reflection re-

moval results on our PORTABLE, NATURAL, and PHONE
dataset in Figure 13, Figure 14, and Figure 15, compared
with several state-of-the-art reflection removal methods in-
cluding IBCLN [3], KH20 [2], CoRRN [7], and ERR-
Net [8]. We also exhibit some challenging examples that
our method cannot handle well in Figure 16 and Figure 17,
where certain regions of strong reflections still exist. Even
so, the results are still better than single-image methods.
The reason can be that the corresponding regions in mix-
ture images are almost saturate, which renders transmission
recovery to be more similar to inpainting. Our future work
will try to solve the problem to generate more visual pleas-
ant results.
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Figure 11. Examples of reflection estimation results on PORTABLE dataset, compared with IBCLN [3], KH20 [2], and CoRRN [7]. Close-
up views are displayed at the bottom of each image. Zoom in for better details.

Mixture image Reflection image Transmission scene

Input Ground truth Reflection removal result

Ours w/o-Saliency

Figure 12. Visual quality comparison of our transmission network with its variant w/o-Saliency. Close-up views are displayed at the right
side of each image. Zoom in for better details.
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Figure 13. More examples of reflection removal results on PORTABLE dataset, compared with IBCLN [3], KH20 [2], ERRNet [8], and
CoRRN [7]. Close-up views are displayed at the bottom of each image. Zoom in for better details.
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Figure 14. Another example on the NATURAL dataset, compared with several state-of-the-art single-image methods. Close-up views are
displayed at the bottom of each image. Zoom in for better details.
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Figure 15. More examples of reflection removal results on PHONE dataset, compared with IBCLN [3], KH20 [2], ERRNet [8], and
CoRRN [7]. Close-up views are displayed at the bottom of each image. Zoom in for better details.
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Figure 16. Challenge cases PORTABLE dataset, compared with IBCLN [3], KH20 [2], ERRNet [8], and CoRRN [7]. Close-up views are
displayed at the bottom of each image. Zoom in for better details.

Reflection removal result
Ours ERRNet CoRRNIBCLN KH20Mixture image Reflection scene

Input

Figure 17. Challenge cases on PHONE dataset, compared with IBCLN [3], KH20 [2], ERRNet [8], and CoRRN [7]. Close-up views are
displayed at the bottom of each image. Zoom in for better details.


