SPLINE-Net: Sparse Photometric Stereo

Through Lighting Interpolation and Normal Estimation Networks Qian Zheng ${ }^{1}$, Yiming Jia ${ }^{2}$, Boxin Shi ${ }^{3,4}$, Xudong Jiang ${ }^{1}$, Ling-Yu Duan ${ }^{3,4}$, Alex C. Kot ${ }^{1}$ ${ }^{1}$ Nanyang Technological University, ${ }^{2}$ Tsinghua University, ${ }^{3}$ Peking University, ${ }^{4}$ Peng Cheng Laboratory

- PROBLEM AND CONTRIBUTIONS

Sparse Photometric Stereo
Estimation of surface normal for static objects with general BRDFs given multiples images captured under a sparse set of arbitrary lights (≤ 10). Key Contributions

Address the problem of sparse photometric stereo through an integrated learning procedure of lighting interpolation and normal estimation.
Show how the proposed symmetric and asymmetric loss functions can be formulated to facilitate the learning of lighting interpolation and normal estimation with isotropy constraint and outlier rejection considered.

- PROPERTY OF OBSERVATION MAP

Overall Performance (CyclesPS-Test, DiLiGenT)

Key Idea
Spatial continuity: image inpainting. Isotropic BRDFs: narrow down the solution space.
Loss Functions

- $\mathcal{L}_{f}=\mathcal{L}_{f}^{r e c}+\lambda_{s} \mathcal{L}_{f}^{s}+\lambda_{a} \mathcal{L}_{f}^{a}$
- $\mathcal{L}_{g}=\mathcal{L}_{g}^{r e c}+\lambda_{s} \mathcal{L}_{g}^{s}+\lambda_{a} \mathcal{L}_{g}^{a}$

Symmetric and Asymmetric Loss - $\mathcal{L}_{s}=|\mathbf{D}-r(\mathbf{D}, \mathbf{n})|_{1}$

- $\mathcal{L}_{a}=\left||\mathbf{D}-r(\mathbf{D}, \mathbf{n})|_{1}-1\right|_{1}+$
$\lambda_{c}| | p(\mathbf{D})-\left.p(r(\mathbf{D}, \mathbf{n}))\right|_{1}-\left.1\right|_{1}$
$r(\cdot)$ mirrors \mathbf{D} with respect to \mathbf{n}

Ablation Study

Limitations
锶
10

