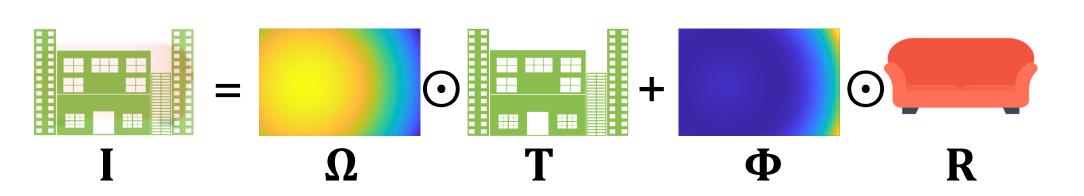


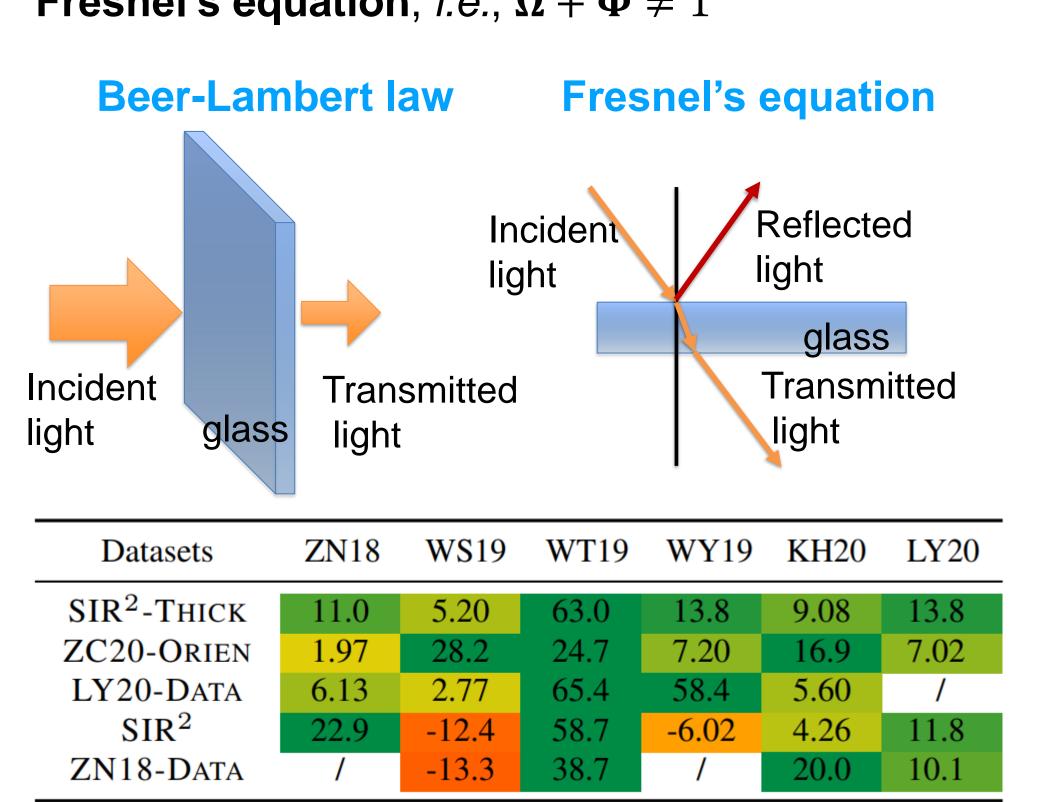
# Single Image Reflection Removal with Absorption Effect

Qian Zheng<sup>1</sup>, Boxin Shi<sup>2,3</sup>, Jinnan Chen<sup>1</sup>, Xudong Jiang<sup>1</sup>, Ling-Yu Duan<sup>2,3</sup>, Alex C. Kot<sup>1</sup> Nanyang Technological University, <sup>2</sup>Peking University, <sup>3</sup>Peng Cheng Laboratory



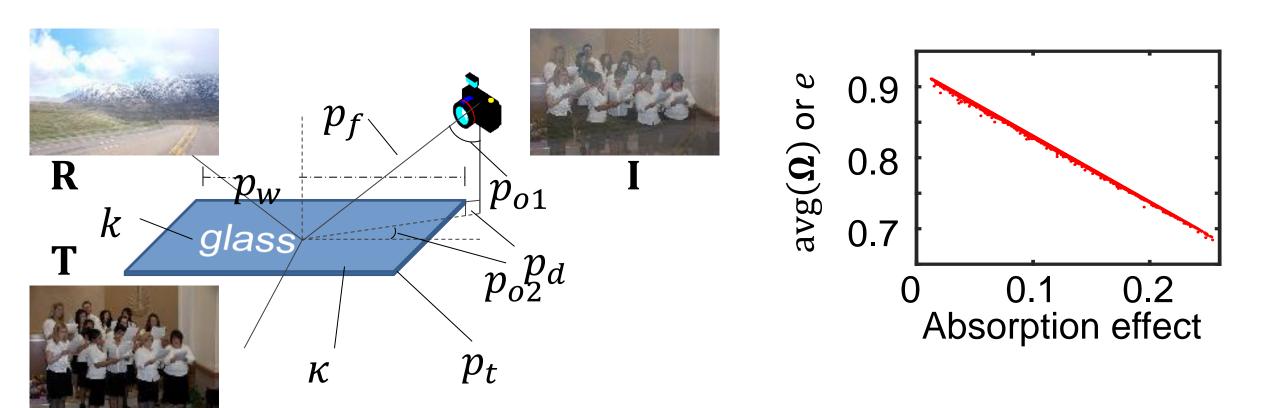

#### **MOTIVATION**

- Absorption effect **varies** with different colors, thicknesses, and orientations of glass in the real-world.
- > Absorption effect darkens the transmission image.
- Existing single reflection removal methods assume the image formation model without absorption effect.


Explicitly considering the absorption effect helps recovery transmission image with more accurate overall intensity.

# - ABSORPTION EFFECT MODELING

Image formation model




Formulating Ω and Φ based on **Beer-Lambert law** and **Fresnel's equation**, *i.e.*, Ω + Φ ≠ 1



#### NUMERICAL APPROXIMATION

Monte Carlos simulation



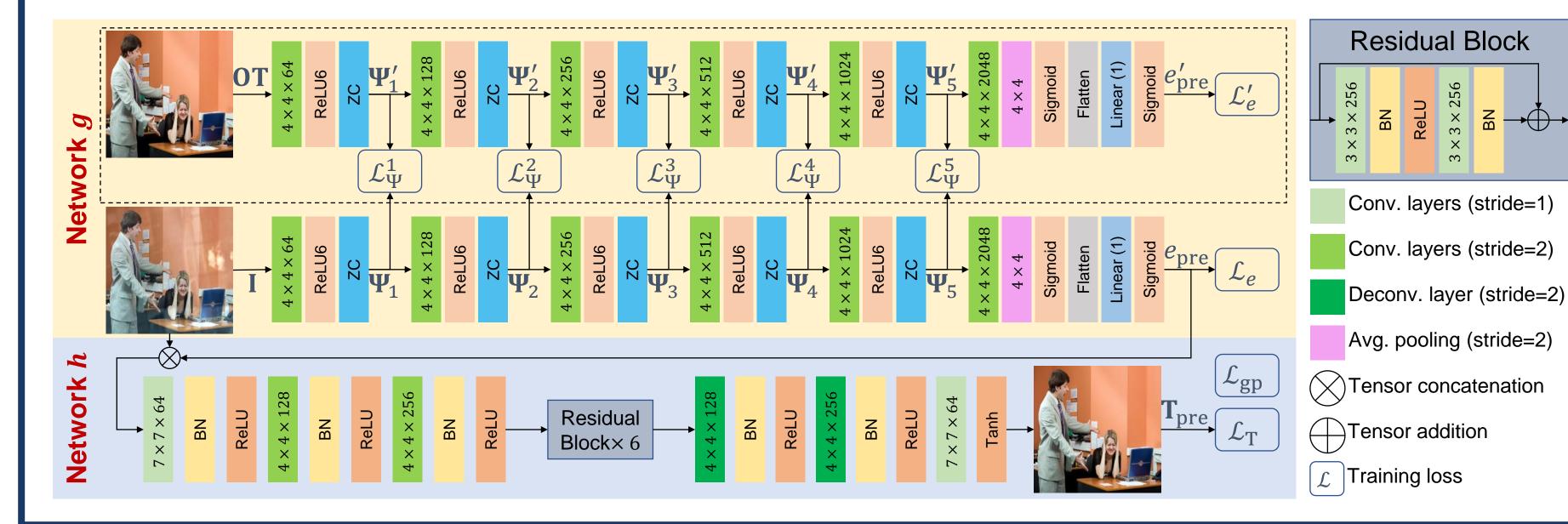
The mean value of  $\Omega$  can be used to numerically approximate the absorption effect e.

> Two-Step solution

 $g: \mathbf{I} \to e$ ,  $h: (\mathbf{I}, e) \to \mathbf{T}$ 

### ESTIMATING e

- > Two-branch network g with sharing weights
- ReLU6: cut off large values produced by strong reflection which is sparse.
- Zero-Center: subtract the uniform impact caused by the weak reflection which is dense.


ReLU6 and zero-center help propagate e through layers.

## - RECOVERING T

- Gradient penalized network h guided by e
- Considering e as a variable and reformulate the optimization with the form of **Partial Differential Equations**.
- Constructing an initial value problem and constraining it to have a unique solution with the Lipschitz constraint.

Lipschitz constraint reliefs the impact of the perturbation of e when recovering the transmission T.

# FRAMEWORK



#### **EXPERIMENTAL RESULTS**

| Dataset(size)              | ) Metric | Ours   | One-branch | w/o-Con       | ZN18[21] | YM19[17] | WS19[23] | WT19[7] | WY19[4] | KH20[25] | LY20[26]      |
|----------------------------|----------|--------|------------|---------------|----------|----------|----------|---------|---------|----------|---------------|
| SIR <sup>2</sup> -         | SSIM     | 0.8965 | 0.8877     | 0.8940        | 0.8494   | 0.8598   | 0.8751   | 0.8687  | 0.8864  | 0.8869   | 0.8641        |
| THICK                      | IS       | 0.9773 | 0.9711     | 0.9752        | 0.9275   | 0.9520   | 0.9532   | 0.9630  | 0.9646  | 0.9696   | 0.9598        |
| (120)[31]                  | PSNR     | 24.05  | 22.85      | 23.59         | 18.91    | 21.85    | 20.63    | 22.03   | 23.00   | 23.46    | 22.02         |
| ZC20-                      | SSIM     | 0.8790 | 0.8638     | 0.8663        | 0.8673   | 0.8660   | 0.8244   | 0.8644  | 0.8616  | 0.8757   | 0.8743        |
| ORIEN                      | IS       | 0.9722 | 0.9598     | 0.9720        | 0.9670   | 0.9660   | 0.9142   | 0.9594  | 0.9646  | 0.9712   | 0.9681        |
| (160)[50]                  | PSNR     | 23.93  | 20.42      | 23.69         | 22.61    | 23.68    | 19.26    | 21.40   | 23.84   | 23.48    | 23.56         |
| LY20-                      | SSIM     | 0.8732 | 0.8568     | 0.8673        | 0.8354   | 0.8531   | 0.8420   | 0.8244  | 0.8254  | 0.8480   | 0.8568        |
| DATA                       | IS       | 0.9552 | 0.9428     | 0.9503        | 0.9410   | 0.9458   | 0.9401   | 0.9368  | 0.9499  | 0.9490   | 0.9414        |
| (220)[26]                  | PSNR     | 23.97  | 22.23      | 23.72         | 23.13    | 21.93    | 21.35    | 20.73   | 22.41   | 22.85    | 23.61         |
| SIR <sup>2</sup> (454)[31] | SSIM     | 0.9003 | 0.8906     | 0.8934        | 0.8703   | 0.8680   | 0.8961   | 0.8746  | 0.8906  | 0.8916   | 0.8945        |
|                            | IS       | 0.9756 | 0.9688     | 0.9733        | 0.9267   | 0.9503   | 0.9500   | 0.9594  | 0.9593  | 0.9666   | 0.9589        |
|                            | PSNR     | 24.34  | 23.06      | 23.90         | 19.24    | 22.20    | 20.93    | 22.05   | 23.35   | 23.64    | 22.76         |
| ZN18-                      | SSIM     | 0.7783 | 0.7653     | 0.7669        | 0.7671   | 0.7395   | 0.7663   | 0.6844  | 0.7668  | 0.7507   | <b>0.7691</b> |
| DATA                       | IS       | 0.8970 | 0.8846     | <b>0.8966</b> | 0.8843   | 0.8703   | 0.8956   | 0.8678  | 0.8727  | 0.8808   | 0.8773        |
| (109)[21]                  | PSNR     | 19.63  | 18.32      | <b>19.60</b>  | 18.44    | 18.69    | 19.04    | 17.01   | 19.22   | 18.84    | 19.05         |

#### **CONTRIBUTIONS**

- The **first formulation** to consider the absorption effect in the context of reflection removal and show that the absorption effect can be **numerically approximated** by the average of refractive amplitude.
- ➤ A two-step solution, with a two-branch training strategy and the constraint of Lipschitz condition, to solve the problem of single image reflection removal with the consideration of absorption effect.



Codes Available!