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Abstract Background A photometric stereo method aims to recover the surface normal of a 3D object 

observed under varying light directions. It is an ill-defined problem because the general reflectance properties 

of the surface are unknown. Methods This paper reviews existing data-driven methods, with a focus on 

their technical insights into the photometric stereo problem. We divide these methods into two categories, 

per-pixel and all-pixel, according to how they process an image. We discuss the differences and relationships 

between these methods from the perspective of inputs, networks, and data, which are key factors in designing 

a deep learning approach. Results  We demonstrate the performance of the models using a popular 

benchmark dataset. Conclusions Data-driven photometric stereo methods have shown that they possess a 

superior performance advantage over traditional methods. However, these methods suffer from various 

limitations, such as limited generalization capability. Finally, this study suggests directions for future 

research. 
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1 Introduction  

Modern 3D computer stereo vision methods, including geometric (e.g., binocular[1] and multi-view stereo[2]) 

and photometric approaches [3], have produced faithful 3D reconstructions from a set of images. Photometric 

methods are capable of reproducing the fine details of the surface at a superior resolution for highly accurate 

3D shape reconstruction[4]. Despite its long history in computer vision[3], photometric stereo (PS) is still a 

fundamentally challenging research problem due to the unknown reflectance and global illumination effects 

of real-world objects[5]. Traditional methods address these difficulties by modeling non-Lambertian 

reflectance using a Bidirectional Reflectance Distribution Function (BRDF) (e.g., analytical[6] or empirical[7] 

BRDF representations) and considering global illumination effects as outliers (e.g., Sparse Bayesian 



 

 

Learning [8]). However, such hand-crafted reflectance models are generally only effective for limited 

categories of reflectance[9].  

Inspired by the powerful modeling capacity of deep neural networks for various computer vision tasks 

(e.g., light estimation[10], stereo vision[1]), researchers have investigated to develop practical reflectance 

models through data-driven approaches to solve the problem of photometric stereo. DPSN (Deep Photometric 

Stereo Network)[9] was the first attempt to address non-Lambertian reflectance using deep learning 

technologies. This approach requires that the testing probe shares the same pre-defined set of light directions 

as the training data, which limits its generalization. Therefore, a new model has to be retrained to test data 

with different lighting conditions. CNN-PS (Convolutional Neural Network based Photometric Stereo)[11], 

PS-FCN (Photometric Stereo using Fully Convolutional Network)[12], and IRPS (neural Inverse Rendering 

for general reflectance Photometric Stereo)[13] relax this constraint so that data with order-agnostic light 

directions can be tested. LMPS (Learning to Minify Photometric Stereo)[14] and SPLINE-Net (Sparse 

Photometric stereo though Lighting Interpolation and Normal Estimation)[15] further consider a small number 

of lighting conditions, which helps reduce the complexity of the data capture process. SDPS (Self-calibration 

Deep Photometric Stereo)[16] assumes uncalibrated lighting and achieves state-of-the-art performance. 

Moreover, Outdoor-PS (single day Outdoor Photometric Stereo)[17] applies data-driven photometric stereo 

methods to outdoor scenarios (i.e., a partly cloudy or sunny day). 

This paper reviews eight recent attempts to use data-driven methods to solve the problem of photometric 

stereo, based on our tutorial1 and course2  in the latest conferences. For a comprehensive discussion of non-

learning based photometric stereo methods, we refer readers to survey papers[5,18,19].  

2 Data-Driven Photometric Stereo Methods 

A recent survey paper[5] divides traditional non-Lambertian photometric stereo methods into outlier rejection 

based methods[8,20], analytic BRDF modeling based methods[6], and empirical BRDF modeling based 

methods[7,21,22] according to the reflectance model adopted. These methods can also be categorized as per-

pixel[6,7,8,21,22] or all-pixel[20] according to how they process the input images, i.e., using either observed 

intensities for a single pixel or the whole image. We follow this simple strategy and divide data-driven 

methods into per-pixel [9,11,14,15] and all-pixel methods[12,13,16,17]. Figure 1 shows frameworks of a per-pixel [9] 

and an all-pixel method[12]. Besides the inputs and networks, Figure 1 also illustrates a training dataset[9] and 

a testing dataset[5] used by a data-driven method.  

Data-driven photometric stereo methods aim to optimize a neural network 𝑓(∙) such that  

𝑵 = 𝑓(𝑰), 

where the input 𝑰 can be either 𝐿 observed intensities for a specific pixel or 𝐿 observed images under 𝐿 light 

directions3. The output surface normal  𝑵 is accordingly represented by either a 3-dimensional vector or a  

 

 
1 ICIP 2019 Tutorial. https://www.dropbox.com/s/bhf2yk71z1q3pei/ICIP2019Tutorial_P3R.pdf?dl=0  
2 SIGGRAPH Asia 2019 Course. https://sa2019.siggraph.org/attend/courses/session/23/details/28  
3 We use 𝐿 to represent the number of input images. 

https://www.dropbox.com/s/bhf2yk71z1q3pei/ICIP2019Tutorial_P3R.pdf?dl=0
https://sa2019.siggraph.org/attend/courses/session/23/details/28


 

 

 

Figure 1 Frameworks of a per-pixel and an all-pixel method (left), examples of a training dataset[9] and a testing dataset[5] 

(right). 

 

map with the same resolution as the input images, and 𝑓(∙) is optimized through a training dataset. The 

following discussion avoids mathematical notation as much as possible and focuses on insights in the aspects 

of inputs, networks, and data. 

2.1 Inputs 

Per-pixel methods[9,11,14,15] take observed intensities as the input and output a surface normal for a single pixel, 

while all-pixel methods[12,13,16,17] directly take observed images or patches (multi-pixels) as the input and 

output a surface normal map with the same resolution as the input. This difference indicates that per-pixel 

methods aim to fit an accurate reflectance model for each pixel while all-pixel methods focus on extracting 

accurate surface normal maps from various appearances.  

Per-pixel observation as an intensity profile. An intensity profile is a 𝐿-dimension vector that orders 

elements in observed intensities by the indices of light directions. As information about the light directions 

is not fully used during network training, methods with this input (i.e., DPSN[9]) assume that the light 

directions in both the testing and training data are the same. This strong assumption limits the generalization, 

which means that a new model has to be retrained to test the data when the lighting conditions are different.  

Per-pixel observation as an observation map. The observation map[11] has been proposed to overcome 

the shortcoming described above (Figure 2). It rearranges observation intensities according to light directions 

by directly encoding light directions as 2D coordinates and accordingly projecting observation intensities 

onto a 2D space. CNN-PS[11], LMPS[14], and SPLINE-Net[15] adopt this data structure to obtain inputs to their 



 

 

neural networks. Since the information about light directions is fully retained, CNN-PS[11], LMPS[14], and 

SPLINE-Net[15] can handle inputs with order-agnostic lightings. 

 

Figure 2 The illustration of observation maps (from[11]). Left: different numbers represent different pixels and different 

colors indicate different light directions. Right: 2D coordinates of pixels on observation maps (representing intensities 

in input images) are determined by the projection of a light direction from a 3D space (hemisphere) to a plane. 

 

All-pixel observation using the whole image. The input of Outdoor-PS[17] consists of 𝐿 16 × 16 image 

patches. These patches are ordered according to timestamps in a day (different light directions can be 

observed in different timestamps). Therefore, the light directions are not fully used during network training 

and Outdoor-PS[17] suffers from a similar limitation as that of DPSN[9] i.e., a new model has to be retrained 

to test data when the lighting conditions are different.  

All-pixel observation using patches. Other all-pixel methods use 𝐿 whole images[16] as well as their 

corresponding light directions[12,13] as the input. To test data with order-agnostic lightings, these methods 

either leverage a sharing weights scheme[12,16] or impose an unsupervised manner[13]. In addition to classical 

photometric stereo, several recent advances in multispectral photometric stereo have also used an all-pixel 

method, For example, Antensteiner et al.[23] used the whole image as the input and estimated a surface normal 

through a U-Net[24], and Ju et al.[25] first adopted image patches to estimate a coarse surface normal map and 

then refined it using a per-pixel method. Multispectral photometric stereo involves two additional challenges 

not present in classical photometric stereo[3]: ambiguity brought by the decomposition of spectra and an 

extremely small number of observations (i.e., often 3). Therefore, the following discussion focuses on 

photometric stereo that does not rely on spectral constraints. 

2.2 Networks 

We describe the overall architectures and specific designs of these data-driven photometric stereo methods 

in this section.  For more details, refer to relevant papers[9,11,12,13,14,15,16,17]. 

Overall architectures. Except for DPSN[9], which leverages a classical deep neural network (DNN) 

architecture (consisting of an input layer, hidden layers, and an output layer), other data-driven methods 

impose a convolutional neural network (CNN) architecture. This is because both observation maps and 

natural images share the property of spatial continuity (Figure 2). In per-pixel methods[9,11,14,15], variations of 

DenseNet [23] are utilized to generate a 3-dimensional surface normal because DenseNet[26] is expected to 

strengthen feature propagation and encourage the reuse of features for low dimension (i.e., 3) outputs[26]. In 

all-pixel methods[12,13,16,17], the idea of sharing weights among different modules is used because this design 

benefits from aggregating features extracted from multiple observations (e.g., PS-FCN[12] in Figure 1) or 

enriching the features extracted from a single observation[13,16]. The architectures of simple setups (i.e., 

known and large number of lightings[9,11,12,17]) are less complicated, while those of difficult ones (i.e., PS 

 

 n ut i a es   ree obser ation  a s

   

   

   

 

 

 
 

  

 

  



 

 

with a small number of light directions[15], unknown lightings[16], or in an unsupervised manner[13]) contain 

two sub-networks for joint optimization (e.g., SDPS[16] in Figure 3). 

 

Figure 3 The framework of SDPS[16], which consists of a lighting calibration network and a normal estimation network. 

 

 

Figure 4 Illustration of symmetric (①②) and asymmetric patterns (③④⑤⑥) on observation maps (from[15]). Red lines 

represent the symmetric axis. 

 

Specific designs. Despite cues that are implicitly learned from training data, data-driven methods design 

specific modules or loss functions to improve the robustness of photometric stereo. Per-pixel methods  

explicitly leverage the general reflectance properties (i.e., isotropic BRDF and global illumination effects), 

while all-pixel methods focus on effectively regressing appearances to shapes in an end-to-end scheme. 

⚫ Isotropic BRDF. The consideration of isotropy can be used to narrow down the solution space during 

the training of neural networks. CNN-PS[11] shows that the observation map is rotational pseudo-

invariant to the surface normal based on which additional data are augmented for training (by rotating 

the observation map and its surface normal simultaneously). SPLINE-Net[15] further demonstrates that 

an ideal observation map (i.e., without global illumination effects) exhibits a symmetric pattern and 

proposes a symmetric loss function (Figure 4).  

⚫ Global illumination effects. Taking global illumination effects such as cast shadow and inter-reflection 

into account helps provide robust estimation of real-world data. To simulate shadows cast during 

training, DPSN[9] adopts the dropout operation, and LMPS[14] annotates the observation map by 

requiring some of the intensities to be zero. SPLINE-Net[15] shows that the global illumination effects 

can break the symmetry of an observation map (Figure 4) and introduces an asymmetric loss function. 
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⚫ End-to-end. All-pixel methods pay more attention to the transfer of information among different 

modules from a high level view. These methods concatenate all observed images[13,16,17] and/or 

aggregate all features (from all images)[12,16] to extract shape information since all images contain the 

same surface normal map. Some of these methods further extract reflectance[13] (or lighting[16]) and 

shape information from a single image, as reflectance (or lighting) information is jointly determined by 

the single observation and the shape. 

2.3 Data 

Since the data used in outdoor PS methods[17] are quite different from those used for indoor methods, this 

section focuses on training and testing datasets used in indoor PS methods. 

Training datasets. It is difficult to capture large scale data with the ground truth of surface normal. 

Therefore, most4 data-driven photometric stereo methods synthesize data for training. Table 1 details the 

shapes, materials, light configurations, and rendering engines that have been used when synthesizing training 

data for different methods.  As can be observed, 3D models come from the Blobby [27] or Sculpture Shape 

datasets[28] or the internet. Surface materials are approximated using MERL BRDF[29] or Disney’s  rinci led 

BSDF[30]. Light directions are fixed (the same as those of the testing data), uniformly sampled, or randomly 

sampled. Mitsuba[31] or Cycles[32] (e.g., Outdoor-PS[17]) engines are employed for rendering. Table 1 also 

displays the number of shapes, materials, light directions, and images used by each method. It shows that 

per-pixel methods[9,11,14,15] require a small number of shape models (i.e., smaller than 15) while all-pixel 

methods[12,16] impose a much larger number of shape models (i.e., about 42K). This observation is consistent 

with the discussion in Section 2.1, which explained that per-pixel methods aim to fit an accurate reflectance 

model for each pixel while all-pixel methods focus on extracting accurate surface normal maps from various 

appearances.  

 

Table 1 Details of training data regarding shape, material, light, and images for different data-driven photometric 

stereo methods 

 Shape (Number) Material (Number) Light (Number) Image (Number) 

DPSN[9] Blobby[27] (8) MERL[29] (100) Fixed (96) Mitsuba[31] (76800) 

CNN-PS[11], SPLINE-Net[15] Internet (15) Disney[30] (~15000) Uniform (1300) Cycles[32] (19500) 

LMPS[14] Blobby[27] (9) MERL[29] (100) Random (144) Mitsuba[31] (10368) 

PS-FCN[12], SDPS[16] Blobby[27] & Sculpture[28] (~42K) MERL[16] (100) Random (64) Mitsuba[31] (~5.4M) 

 

Testing datasets. The DiLiGenT dataset[5] is the most widely used real-world dataset for evaluation. It 

consists of 10 different objects with different scales of non-Lambertian reflectance (Figure 1). Each object is 

illuminated and photographed under 96 different lighting directions. The ground truth of surface normal maps 

is also provided. Table 2 displays the quantitative results from these data-driven methods as well as a 

traditional photometric stereo method ST14[22] that achieves state-of-the-art performance. Note that the inputs 

of these methods are quite different, i.e., DPSN[9], CNN-PS[11], PS-FCN[12], IRPS[13], ST14[22] take 96 images 

 
4 Note that IRPS[13] does not require any synthetic training data because it is an unsupervised method. 



 

 

with known light directions as inputs, SPLINE-Net[15] takes 10 random images, LMPS[14] takes 10 optimal 

images, and SDPS[16] takes 96 images without lighting information. As can be observed, results from deep 

learning based methods (i.e., DPSN[9], CNN-PS[11], PS-FCN[12], IRPS[13]) achieved much better 

performance as  

Table 2  Quantitative comparisons in terms of angular error (degree) on the DiLiGenT dataset[5], green to red means 

small to large errors 

  Ball Bear Buddha Cat  Cow Goblet Harvest Pot1 Pot2 Reading Average 

DPSN[9] 2.0 6.3 12.7 6.5 8.0 11.3 16.9 7.0 7.9 15.5 9.4 

CNN-PS[11] 2.2 4.1 7.9 4.6 8.0 7.3 14.0 5.4 6.0 12.6 7.2 

PS-FCN[12] 2.8 7.6 7.9 6.2 7.3 8.6 15.9 7.1 7.3 13.3 8.4 

IRPS[13] 1.5 5.8 10.4 5.4 6.3 11.5 22.6 6.1 7.8 11.0 8.8 

SPLINE-Net[15] 5.0 6.0 10.0 7.5 8.8 10.4 19.1 8.8 11.8 16.1 10.4 

LMPS[14] 4.0 8.7 11.4 6.7 10.2 10.5 17.3 7.3 9.7 14.4 10.0 

SDPS[16] 2.8 6.9 9.0 8.1 8.5 11.9 17.4 8.1 7.5 14.9 9.5 

ST14[22] 1.7 6.1 10.6 6.1 13.9 10.1 25.4 6.5 8.8 13.6 10.3 

 

Table 3 A summary of data-driven photometric stereo methods 

 Method Input Architecture General BRDF End-to-end Limitation 

DPSN[9] Per-pixel Intensities DNN   Constrained lightings 

CNN-PS[11] Per-pixel Intensities CNN   Sensitivity to global 

illumination effects 

SPLINE-Net[15] Per-pixel Intensities CNN   Sensitivity to global 

illumination effects 

LMPS[14] Per-pixel Intensities CNN   Constrained lightings 

IRPS[13] All-pixel Images CNN   Expensive computation 

PS-FCN[12] All-pixel Images CNN   Uniform materials 

SDPS[16] All-pixel Images CNN   Uniform materials 

Outdoor-PS[17] All-pixel Images CNN   Constrained lightings & 

uniform materials 

 

compared with traditional methods when the same inputs were used. Moreover, deep learning based methods 

achieved comparable or better results as compared with traditional methods when the setting was more 

difficult (i.e., a small number of inputs[14,15] or uncalibrated lightings[16]).5 

Besides the quantitative evaluation, the visual quality was also evaluated using real data such as 

GOUDRD&APPLE[33] and Light Stage Data Gallery[34]. In addition, there are several synthetic datasets that 

can be used for validation[9,11,12,15,16,17]. These synthetic data are generally rendered using the same methods 

used for the training data. 

3 Discussion 

Despite the state-of-the-art performance achieved by data-driven methods, they suffer from limitations such 

as expensive computation for testing[13], sensitivity to global illumination effects[11,15], constrained light 

directions[9,14,17], and uniform material surfaces[12,16,17]. A brief summary of these methods and their 

 
5 Please refer https://sites.google.com/site/photometricstereodata/single?authuser=0 for more results of traditional methods. 

https://sites.google.com/site/photometricstereodata/single?authuser=0


 

 

limitations is provided in Table 3. As can be observed, per-pixel methods pay more attention to the modeling 

of general BRDF, and they are robust to non-uniform distributions of surface materials; however, they 

perform less optimally for regions with global illumination effects since the shape information is not 

explicitly considered. All-pixel methods are commonly trained using various shapes with a uniform material 

for each shape. Therefore, they produce accurate results for regions with shadows or inter-reflection, while 

they are less accurate for objects with non-uniform materials. Based on the discussion above, we suggest the 

following directions for future research: 

⚫ Combination. This study demonstrates the unique characteristics of per-pixel and all-pixel methods. 

Mutually combining these two types of approaches to further improve performance will provide another 

research area to explore.  

⚫ Lambertian reflectance. A recent work[15] suggests that deep learning based methods generally 

produce unsatisfied results for Lambertian reflectance that are not comparable with the baseline 

method[3]. Therefore, reflectance that is less similar to DiLiGenT[5] or MERL[29] should be considered 

in a data-driven method to avoid overfitting.  

⚫ Practicality. As data-driven methods have achieved promising performance in a lab environment, 

leveraging deep learning techniques to solve the photometric stereo problem in a more under-

constrained scenario (e.g., Outdoor-PS[17]) should be considered. 

 

 

References 

1 Kendall A, Martirosyan H, Dasgupta S, Henry P, Kennedy R, Bachrach A, Bry A. End-to-end learning 

of geometry and context for deep stereo regression. In: Proceedings of the IEEE International Conference 

on Computer Vision, 2017, 66-75 

DOI:10.1109/ICCV.2017.17 

2 Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 2010, 32(8): 1362–1376 

DOI:10.1109/tpami.2009.161 

3 Woodham R J. Photometric method for determining surface orientation from multiple images. Optical 

Engineering, 1980, 19(1): 191139 

DOI:10.1117/12.7972479 

4 Park J, Sinha S N, Matsushita Y, Tai Y W, Kweon I S. Robust multiview photometric stereo using 

planar mesh parameterization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 

39(8): 1591–1604 

DOI:10.1109/tpami.2016.2608944 

5 Shi B X, Wu Z, Mo Z P, Duan D L, Yeung S K, Tan P. A benchmark dataset and evaluation for non-

lambertian and uncalibrated photometric stereo. In: 2016 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016 

DOI:10.1109/cvpr.2016.403 



 

 

6 Chen L X, Zheng Y Q, Shi B X, Subpa-Asa A, Sato I. A microfacet-based model for photometric stereo 

with general isotropic reflectance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

2019 

DOI:10.1109/tpami.2019.2927909 

7 Ikehata S, Aizawa K. Photometric stereo using constrained bivariate regression for general isotropic 

surfaces. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. 

IEEE, 2014 

DOI:10.1109/cvpr.2014.280 

8 Ikehata S, Wipf D, Matsushita Y, Aizawa K. Robust photometric stereo using sparse regression. In: 

2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI. IEEE, 2012 

DOI:10.1109/cvpr.2012.6247691 

9 Santo H, Samejima M, Sugano Y, Shi B X, Matsushita Y. Deep photometric stereo network. In: 2017 

IEEE International Conference on Computer Vision Workshops (ICCVW). Venice. IEEE, 2017 

DOI:10.1109/iccvw.2017.66 

10 Garon M, Sunkavalli K, Hadap S, Carr N, Lalonde J F. Fast spatially-varying indoor lighting 

estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 

CA, USA. IEEE, 2019 

DOI:10.1109/cvpr.2019.00707 

11 Ikehata S. CNN-PS: CNN-based photometric stereo for general non-convex surfaces// Computer 

Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 3–19 

DOI:10.1007/978-3-030-01267-0_1 

12 Chen G Y, Han K, Wong K Y K. PS-FCN: A flexible learning framework for photometric stereo// 

Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 3–19 

DOI:10.1007/978-3-030-01240-3_1 

13 Taniai T, Maehara T. Neural inverse rendering for general reflectance photometric stereo. In: 

International Conference on Machine Learning, 2018 

14 Li J X, Robles-Kelly A, You S D, Matsushita Y. Learning to minify photometric stereo. In: 2019 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. 

IEEE, 2019 

DOI:10.1109/cvpr.2019.00775 

15 Zheng Q, Jia Y M, Shi B X, Jiang X D, Duan L Y, Kot A. SPLINE-net: sparse photometric stereo 

through lighting interpolation and normal estimation networks. In: 2019 IEEE/CVF International 

Conference on Computer Vision (ICCV). Seoul, Korea (South). IEEE, 2019 

DOI:10.1109/iccv.2019.00864 

16 Chen G Y, Han K, Shi B X, Matsushita Y, Wong K Y K K. Self-calibrating deep photometric stereo 

networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long 

Beach, CA, USA. IEEE, 2019 

DOI:10.1109/cvpr.2019.00894 



 

 

17 Hold-Geoffroy Y, Gotardo P, Lalonde J F. Single day outdoor photometric stereo. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 2019 

DOI:10.1109/TPAMI.2019.2962693 

18 Ackermann J, Goesele M. A survey of photometric stereo techniques. Foundations and Trends® in 

Computer Graphics and Vision, 2015, 9(3/4): 149–254 

DOI:10.1561/0600000065 

19 Herbort S, Wöhler C. An introduction to image-based 3D surface reconstruction and a survey of 

photometric stereo methods. 3D Research, 2011, 2(3): 4 

DOI:10.1007/3dres.03(2011)4 

20 Wu L, Ganesh A, Shi B X, Matsushita Y, Wang Y T, Ma Y. Robust photometric stereo via low-rank 

matrix completion and recovery// Computer Vision – ACCV 2010. Berlin, Heidelberg: Springer Berlin 

Heidelberg, 2011: 703–717 

DOI:10.1007/978-3-642-19318-7_55 

21 Zheng Q, Kumar A, Shi B X, Pan G. Numerical reflectance compensation for non-lambertian 

photometric stereo. IEEE Transactions on Image Processing, 2019, 28(7): 3177–3191 

DOI:10.1109/tip.2019.2894963 

22 Shi B X, Tan P, Matsushita Y, Ikeuchi K. Bi-polynomial modeling of low-frequency reflectances. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1078–1091 

DOI:10.1109/tpami.2013.196 

23 Antensteiner D, Stolc S, Soukup D. Single image multi-spectral photometric stereo using a split u-

shaped CNN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 

Workshops, 2019 

24 Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image 

segmentation// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 

234–241 

DOI:10.1007/978-3-319-24574-4_28 

25 Ju Y K, Dong X H, Wang Y Y, Qi L, Dong J Y. A dual-cue network for multispectral photometric 

stereo. Pattern Recognition, 2020, 100: 107162 

DOI:10.1016/j.patcog.2019.107162 

26 Huang G, Liu Z, van der Maaten L, Weinberger K Q. Densely connected convolutional networks. In: 

2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI. IEEE, 2017 

DOI:10.1109/cvpr.2017.243 

27 Johnson M K, Adelson E H. Shape estimation in natural illumination. In: CVPR 2011. Colorado 

Springs, CO, USA. IEEE, 2011 

DOI:10.1109/cvpr.2011.5995510 

28 Wiles O, Zisserman A. SilNet: single- and multi-view reconstruction by learning from silhouettes. In: 

Proceedings of the British Machine Vision Conference 2017, London, UK. British Machine Vision 

Association, 2017 



 

 

DOI:10.5244/c.31.99 

29 Matusik W, Pfister H, Brand M, McMillan L. A data-driven reflectance model. In: ACM SIGGRAPH 

2003 Papers on - SIGGRAPH. San Diego, California. New York, USA: ACM Press, 2003 

DOI:10.1145/1201775.882343 

30 Burley B, Studios W D. Physically-based shading at Disney, part of practical physically based shading 

in film and game production. In: Proceedings of ACM SIGGRAPH Courses, 2012 

31 Jakob, W.Mitsuba renderer, 2010 

32 Cycles. https://www.cycles-renderer.org/  

33 Alldrin N, Zickler T, Kriegman D. Photometric stereo with non-parametric and spatially-varying 

reflectance. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, 

USA. IEEE, 2008 

DOI:10.1109/cvpr.2008.4587656 

34 Einarsson P, Chabert C F, Jones A, Ma W C, Lamond B, Hawkins T, Bolas M, Sylwan S, Debevec 

P. Relighting human locomotion with flowed reflectance fields. In: Proceedings of the Eurographics 

Conference on Rendering Techniques, 2006, 183-194 

 


