
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

An Off-Policy Trust Region Policy Optimization
Method With Monotonic Improvement Guarantee

for Deep Reinforcement Learning
Wenjia Meng , Qian Zheng, Yue Shi, and Gang Pan , Member, IEEE

Abstract— In deep reinforcement learning, off-policy data help
reduce on-policy interaction with the environment, and the trust
region policy optimization (TRPO) method is efficient to stabilize
the policy optimization procedure. In this article, we propose an
off-policy TRPO method, off-policy TRPO, which exploits both
on- and off-policy data and guarantees the monotonic improve-
ment of policies. A surrogate objective function is developed
to use both on- and off-policy data and keep the monotonic
improvement of policies. We then optimize this surrogate objec-
tive function by approximately solving a constrained optimization
problem under arbitrary parameterization and finite samples.
We conduct experiments on representative continuous control
tasks from OpenAI Gym and MuJoCo. The results show that
the proposed off-policy TRPO achieves better performance in
the majority of continuous control tasks compared with other
trust region policy-based methods using off-policy data.

Index Terms— Deep reinforcement learning, off-policy data,
policy-based method, trust region.

I. INTRODUCTION

MODEL-FREE deep reinforcement learning has achieved
great successes in scaling reinforcement learning to

complex sequential decision-making problems [1]–[3]. The
model-free deep reinforcement learning aims to optimize
an agent’s policy through trial and error interaction with a
black-box environment [4], [5]. According to the way how
to learn the policy, previous works can be roughly divided
into two categories [6]–[8]: value-based methods [9]–[12],
[13]–[15] and policy-based methods [16]–[19], [20], [21].
Generally, value-based methods are less effective in continuous
control tasks due to the problem of the curse of dimensionality,
while policy-based methods address this problem by directly
learning policy distribution over action space [22].

Though policy-based methods are likely to be more
effective on continuous control tasks [22]–[24], they suffer

Manuscript received January 23, 2020; revised August 10, 2020; accepted
November 24, 2020. This work was supported in part by the National Key
Research and Development Program of China under Grant 2017YFB1002503,
in part by the Natural Science Foundation of China under Grant 61925603 and
Grant U1909202, and in part by the Ten Thousand Talent Program of Zhejiang
Province under Grant 2018R52039. (Corresponding author: Gang Pan.)

Wenjia Meng and Yue Shi are with the College of Computer Science
and Technology, Zhejiang University, Hangzhou 310027, China (e-mail:
mengwenjia@zju.edu.cn; shiyue@zju.edu.cn).

Qian Zheng is with the ROSE Lab, Nanyang Technological University,
Singapore 637553 (e-mail: csqianzheng@gmail.com).

Gang Pan is with the State Key Lab of CAD&CG, Zhejiang University,
Hangzhou 310027, China (e-mail: gpan@zju.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2020.3044196.

Digital Object Identifier 10.1109/TNNLS.2020.3044196

from instability due to their simple policy update strat-
egy [5], [25], [26]. Trust region policy-based methods
[18], [25]–[27], [28]–[30] are proposed to alleviate such
instability through bounding policy updates to a trust region.
However, early works (e.g., [18], [25]–[27], [28]) cannot
fully exploit off-policy data [31], [32] and, thus, require a
large amount of on-policy interaction with the environment,
resulting in significant performance degradation for many
real-world applications.

Recently, several trust region policy-based works are pro-
posed to take off-policy data into account as the utiliza-
tion of these data can reduce the on-policy interaction with
the environment [33]. Previous works use off-policy data
to train value function (e.g., Q-Prop [33]) or both value
function and policy function (e.g., interpolated policy gradient
(IPG) [34], actor critic with experience replay (ACER) [16],
and Trust-PCL [5]). However, these methods cannot guarantee
monotonic improvement, which is considered to be critical for
the training of complex and powerful policies [25].

To this end, we develop an off-policy trust region policy
optimization (TRPO) method, off-policy TRPO, which can
guarantee the monotonic improvement of policies. Specifically,
the proposed off-policy TRPO guarantees monotonic policy
improvement by monotonically optimizing a surrogate objec-
tive function using both on- and off-policy data. This surrogate
objective function in our method is inspired by the idea of
the surrogate objective function using only on-policy data in
TRPO [25]. Our contributions are twofold.

1) We develop a novel surrogate objective function using
both on- and off-policy data. The monotonic improve-
ment of this surrogate objective function can guarantee
the monotonic improvement of policies.

2) We propose a practical optimization method (called
off-policy TRPO) to optimize our surrogate objective
function under parameterized policies and finite samples,
which achieves superior performance compared with
other trust region policy-based methods using off-policy
data.

II. NOTATION AND BACKGROUND

In this article, we consider a standard reinforcement learning
setup with the Markov decision process (MDP) [35]. The MDP
comprises of a state space S, an action space A, a stationary
transition dynamics distribution P : S × A × S → R, an initial
state distribution ρ0 : S → R, a reward function r : S × A →
R, and a discount factor γ ∈ (0, 1). In MDP, an agent acts in

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-5784-7187
https://orcid.org/0000-0002-4049-6181


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

a stochastic environment E by sequentially choosing actions
over a sequence of timesteps. At each timestep t , the agent
encounters a state st and performs an action at according to
policy π : S × A → [0, 1]. The environment then returns a
scalar reward r(st , at ) and a new state according to dynamics
P(st+1 | st , at).

According to policy π , the agent interacts with the
MDP to give a trajectory of states, actions, and rewards:
s0, a0, r0, . . . , st , at , rt , . . . The return Rt is the cumulative
discounted reward from timestep t , Rt = ∑∞

k=t γ k−t r(sk, ak)
[36]. The state value function and the action value function
are defined as the expected return, Vπ(st ) = Eat ,st+1,...[Rt ] and
Qπ (st , at) = Est+1,at+1,...[Rt ] [36]. The formulations of these
two functions and their relationship [4] are

Vπ (st) = Eat ,st+1,...∼π

[ ∞∑
k=t

γ k−t r(sk, ak)

]
(1)

Qπ (st , at) = Est+1,at+1,...∼π

[ ∞∑
k=t

γ k−t r(sk, ak)

]
(2)

Vπ (st) = Eat ∼π(·|st )[Qπ (st , at)]. (3)

The standard definition for the advantage function then can be
represented

Aπ (st , at) = Qπ (st , at) − Vπ(st ) (4)

which provides a relative measure of value with each action
since Eat ∼π [Aπ(st , at )] = 0. Given policy π , the discounted
visitation frequency ρπ(s) [25] can be defined as a discounted
weighting of states encountered starting at s0 and then follow-
ing π [37]:

ρπ(s) = P(s0 = s) + γ P(s1 = s) + γ 2 P(s2 = s) + · · ·
=

∞∑
t=0

γ t P(st = s|s0, π). (5)

In the following, we first introduce the goal of reinforcement
learning, i.e., maximizing policy performance. Next, we briefly
introduce the TRPO method that can use on-policy data to
improve policy performance with the monotonic improvement
guarantee.

A. Maximizing Policy Performance

The goal of reinforcement learning is to maximize expected
return from the start state, denoted by policy performance
objective η(π) = Es0,a0,...[R0] [37], [38]. This objective is
further represented as

η(π) = Es0,a0,...

[ ∞∑
t=0

γ tr(st , at)

]

where

s0 ∼ ρ0, at ∼ π(·|st ), st+1 ∼ P(·|st , at). (6)

The expected return of another policy π̃ can be expressed in
terms of the advantage over π , accumulated over timesteps

(detailed in [39])

η(π̃) = η(π) + Es0,a0,...∼π̃

[ ∞∑
t=0

γ t Aπ (st , at)

]

= η(π) +
∑

s

ρπ̃ (s)
∑

a

π̃(a|s)Aπ(s, a). (7)

Note that any policy update π → π̃ that satisfies∑
s ρπ̃ (s)

∑
a π̃(a|s)Aπ(s, a) ≥ 0 can guarantee the improve-

ment of policy performance η. The difficulty of such a policy
improvement guarantee lies in the dependence of ρπ̃ (s) on π̃ .
In order to reduce such dependence, a local approximation to
η(π̃) is proposed by replacing visitation frequency ρπ̃ with
ρπ [25]

Lπ (π̃) = η(π) +
∑

s

ρπ(s)
∑

a

π̃ (a|s)Aπ(s, a). (8)

A sufficiently small step π → π̃ that improves Lπ will also
improve η [25]. However, such an improvement of η is limited
by this sufficiently small step.

B. Trust Region Policy Optimization

TRPO [25] is proposed to avoid such limitation, which is
inspired by the method of conservative policy iteration [39].
TRPO proposes a surrogate objective function based on a
lower bound for policy performance η and proves that maxi-
mizing the proposed function can guarantee the improvement
of policy performance. Specifically, the lower bound provided
in TRPO is as follows:

η(πnew) ≥ Lπold(πnew) − 4�γ

(1 − γ )2
Dmax

KL (πold, πnew) (9)

where � = maxs,a |Aπold(s, a)|, πold and πnew separately repre-
sent current policy and new policy, and the distance formula-
tion Dmax

KL (πold, πnew) is defined by the Kullback–Leibler (KL)
divergence [40]: Dmax

KL (πold, πnew) = maxs DKL(πold(·|s) �
πnew(·|s)). Equation (9) shows that the improvement of the
surrogate objective function in the right-hand side can guar-
antee the improvement of policy performance η [25]. For this
surrogate objective function, its visitation frequency ρπold in
Lπold(πnew) depends on specific behavior policy, i.e., current
policy πold.

III. SURROGATE OBJECTIVE FUNCTION

TRPO is difficult to use off-policy data because its surrogate
objective function depends on a specific behavior policy, i.e.,
current policy. In order to maintain the advantage of the
monotonic policy improvement guarantee and make full use of
off-policy data, we develop a new surrogate objective function
that depends on general behavior policy, which can represent
both current policy and previous policy. Specifically, we first
propose a local approximation to policy performance η and
derive its corresponding lower bound of policy performance.
Next, with this lower bound, we derive the desired surrogate
objective function that can guarantee the monotonic improve-
ment of policy performance.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MENG et al.: OFF-POLICY TRPO METHOD WITH MONOTONIC IMPROVEMENT GUARANTEE 3

A. Lower Bound of Policy Performance η

We propose a local approximation to η(π̃) by replacing
visitation frequency ρπ̃ by ρμ

Lπ,μ(π̃) = η(π) +
∑

s

ρμ(s)
∑

a

π̃(a|s)Aπ(s, a) (10)

where the general behavior policy μ can represent both current
policy and previous policy, and ρμ(s) denotes a discounted
weighting of states encountered starting at s0 and then fol-
lowing μ: ρμ(s) = ∑∞

t=0 γ t P(st = s|s0, μ) [37]. This
approximation is inspired by the approximation in (8). The
key difference between approximation here and that of (8) is
that our Lπ,μ uses the visitation frequency ρμ rather than ρπ ,
which implies that both on- and off-policy data can be used
in this approximation.

With the proposed approximation, we next describe how
to derive the lower bound of policy performance η. In the
derivation, we adopt the total variation (TV) divergence [25]
as policy distance measure, which is defined as DTV(p�q) =
1/2

∑
i |pi − qi | for probability distribution p, q . The specific

formulation used in the derived bound is

Dmax
TV (p, q) = max

s
DTV(p(·|s) � q(·|s)) (11)

which is consistent with that in [25]. The original formulation
of the lower bound is described in the following theorem.

Theorem 1: Let απ = Dmax
TV (πold, πnew), αμ =

Dmax
TV (μ, πnew). Then, the following bound holds:

η(πnew) ≥ Lπold,μ(πnew) − 4�γ

(1 − γ )2
απαμ

where

� = max
s,a

|Aπold(s, a)|. (12)

The proof can be found in Appendix A.
Based on the upper bound of αμ in Appendix B, i.e., αμ ≤

Dmax
TV (μ, πold) + Dmax

TV (πold, πnew), (12) can be rewritten as

η(πnew) ≥ Lπold,μ(πnew) − 4�γ

(1 − γ )2
απαμ

≥ Lπold,μ(πnew) − 4�γ

(1 − γ )2
απ

× (
Dmax

TV (μ, πold) + Dmax
TV (πold, πnew)

)
where

� = max
s,a

|Aπold(s, a)|. (13)

The lower bound of η(πnew) then follows:
η(πnew)

≥ Lπold,μ(πnew) − CDmax
TV (πold, πnew)[

Dmax
TV (μ, πold) + Dmax

TV (πold, πnew)
]

= Lπold,μ(πnew) − C[max
s

DTV(μ, πold) max
s

DTV(πold, πnew)

+ max
s

DTV(πold(·|s), πnew(·|s))2]
where

C = 4�γ

(1 − γ )2
. (14)

B. Derivation of Surrogate Objective Function

The derivation of the surrogate objective function is based
on the lower bound in (14). Specifically, we take advantage
of the relationship between TV divergence and KL divergence
DTV(p � q)2 ≤ DKL(p � q) [41] and obtain the following
lower bound from (14):

η(π̃) ≥ Lπ,μ(π̃) − CDmax,sqrt
KL (μ, π)Dmax,sqrt

KL (π, π̃)

− CDmax
KL (π, π̃) (15)

where Dmax
KL (π, π̃) = maxs DKL(π(·|s) � π̃(·|s)),

Dmax,sqrt
KL (π, π̃) = maxs(DKL(π(·|s) � π̃(·|s)))1/2, and

Dmax,sqrt
KL (μ, π) = maxs(DKL(μ(·|s) � π(·|s)))1/2.
It should be noted that a policy update that improves the

right-hand side of (15) can guarantee the improvement of the
true performance η. For simplicity, we denote the right-hand
side of (15) as Mπ (π̃)

Mπ (π̃) = Lπ,μ(π̃) − CDmax,sqrt
KL (μ, π)Dmax,sqrt

KL (π, π̃)

− CDmax
KL (π, π̃). (16)

Note that, when π̃ = π , Mπ (π̃) in (16) can be represented as

Mπ (π)

= Lπ,μ(π)−CDmax,sqrt
KL (μ, π)Dmax,sqrt

KL (π, π)−CDmax
KL (π, π)

= Lπ,μ(π) by DKL(π(·|s) � π(·|s)) = 0

= η(π) +
∑

s

ρμ(s)
∑

a

π(a|s)Aπ(s, a) by Equation (10)

= η(π)

+
∑

s

ρμ(s)
∑

a

π(a|s)(Qπ(s, a) − Vπ(s))by Equation (4)

= η(π) +
∑

s

ρμ(s)(Vπ(s) − Vπ (s)) by Equation (3)

= η(π). (17)

According to (15) and (17), the lower bound of η(π̃) − η(π)
is derived as follows:

η(π̃) ≥ Mπ (π̃) by Equation (15)

η(π) = Mπ (π) by Equation (17).

Thus

η(π̃) − η(π) ≥ Mπ (π̃) − Mπ (π). (18)

That is, maximizing the function Mπ (π̃) by choosing appro-
priate policy π̃ can guarantee that the true objective η is
nondecreasing. Therefore, Mπ (π̃) is our desired surrogate
objective function that can make use of both on- and off-policy
data and guarantee the monotonic improvement of policies.

In order to further illustrate the monotonic improvement
guarantee, we then describe a policy iteration scheme that
optimizes the proposed surrogate objective function at each
iteration. Specifically, we construct the surrogate objective
function Mπi (π) and maximize this function at each iteration
i , i.e.,

πi+1 = arg max
π

[
Lπi ,μ(π) − CDmax,sqrt

KL (μ, πi )Dmax,sqrt
KL (πi , π)

− CDmax
KL (πi , π)

]
. (19)

This policy iteration scheme can generate a monotonically
improved policy sequences η(πk) ≤ η(πk+1), k ∈ N.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

IV. OFF-POLICY TRPO

The optimization of the proposed surrogate objective func-
tion in Section III is independent of the policy parameteriza-
tion. It assumes that the policy can be evaluated in all states.
However, in practice, it depends on the policy parameterization
and only exploits finite samples [25], [28]. To tackle this
challenge, we approximate the above optimization problem
to a constrained optimization problem under parameterized
policies and finite samples.

A. Derivation of the Constrained Optimization Problem

The derivation of the constrained optimization problem is
based on parameterized policies and finite samples, which is
widely adopted in practical methods [25], [28]. Different from
that in [25] and [28], our derivation is to optimize the surrogate
objective function proposed in Section III.

1) Optimization Problem Under Parameterized Policies:
We consider parameterized policies by representing policies
with πθ (a|s), where θ denotes the parameter vector. With the
parameterized policies, the lower bound of policy performance
η in (15) becomes

η(θ) ≥ Lθold,μ(θ) − CDmax, sqrt
KL (μ, θold)Dmax, sqrt

KL (θold, θ)

−CDmax
KL (θold, θ) (20)

where η(θ) := η(πθ ), Lθold,μ(θ) := Lπθold ,μ(πθ),
Dmax

KL (θold, θ) := Dmax
KL (πθold, πθ ), Dmax, sqrt

KL (θold, θ) :=
Dmax, sqrt

KL (πθold, πθ), Dmax, sqrt
KL (μ, θold) := Dmax, sqrt

KL (μ, πθold),
and θold denotes current policy parameters. Thus, the opti-
mization problem guaranteeing the improvement of the true
objective η can be represented as

maximize
θ

[
Lθold,μ(θ) − CDmax, sqrt

KL (μ, θold)Dmax, sqrt
KL (θold, θ)

− CDmax
KL (θold, θ)

]
. (21)

However, the above optimization process is limited by a
small step size due to the penalty coefficient C . Similar to the
solution in [25] and [28], we adopt a trust region constraint
to take larger steps

max
θ

Lθold,μ(θ)

s.t. Dmax, sqrt
KL (μ, θold)Dmax, sqrt

KL (θold, θ)

+ Dmax
KL (θold, θ) ≤ δ (22)

where δ indicates the bound for the trust region
constraint.

The constraints bounded at each point in the state
space make the above problem intractable [25]. We employ
the constraint of the average KL divergence: D

ρμ

KL(θold, θ),
D

ρμ,sqrt
KL (μ, θold), and D

ρμ,sqrt
KL (θold, θ), which are defined in

Appendix C. Therefore, the optimization problem with trust
region constraint in (22) can be approximated by

max
θ

Lθold,μ(θ)

s.t. D
ρμ,sqrt
KL (μ, θold)D

ρμ,sqrt
KL (θold, θ) + D

ρμ

KL(θold, θ) ≤ δ. (23)

2) Optimization Problem under Finite Samples: Based on
the derived optimization problem under parameterized policies
in (23), we next take finite samples into account. In order to
use finite samples to estimate the objective in the constrained
optimization problem, we expand Lθold,μ(θ) in (23)

Lθold,μ(θ) = η(θold) +
∑

s

ρμ(s)
∑

a

πθ(a|s)Aθold(s, a). (24)

∑
s ρμ(s)[· · · ] in Equation (24) can be replaced by the

expectation (1/1 − γ )Es∼ρμ
[· · · ] [25]. Subsequently, the sum-

mation of actions (sum over actions) can be replaced by
importance sampling estimator, and the contribution of a single
s to the objective function becomes∑

a

πθ(a|s)Aθold(s, a) = Ea∼μ

[
πθ (a|s)
μ(a|s) Aθold(s, a)

]
. (25)

Thus, our optimization problem with trust region constraint
in (23) can be represented in terms of expectations

max
θ

Es∼ρμ,a∼μ

[
πθ(a|s)
μ(a|s) Aθold(s, a)

]
s.t. D

ρμ,sqrt
KL (μ, θold)D

ρμ,sqrt
KL (θold, θ) + D

ρμ

KL(θold, θ) ≤ δ. (26)

Specifically, the expectations in (26) can be approximated by
averaging finite samples, which can be either on-policy or off-
policy.

B. Solving the Constrained Optimization Problem

The solution to the constrained optimization problem under
parameterized policies and finite samples in (26) contains two
steps that are similar to those in [25]. Specifically, we first
compute a search direction s for the policy update. Then,
we derive a reasonable step size κ , which enables policy
updates to improve objective function and satisfies the trust
region constraint. With the search direction s and step size κ ,
we update policy parameters by θ = θold + κs to optimize the
constrained optimization problem in (26).

Adopting a linear approximation to the objective and a
quadratic approximation to the constraint [25], the constrained
optimization problem in (26) becomes

max
θ

[∇θ Oθold,μ(θ) |θ=θold ·(θ − θold)]

s.t.
1

2
(θ − θold)

T F(θold)(θ − θold) ≤ δ (27)

where

F(θold)i j = ∂

∂θi

∂

∂θ j

[
D

ρμ,sqrt
KL (μ, θold)D

ρμ,sqrt
KL (θold, θ)

+ D
ρμ

KL(θold, θ)
]|θ=θold

Oθold,μ(θ) = Es∼ρμ,a∼μ

[
πθ(a|s)
μ(a|s) Aθold(s, a)

]
.

The search direction can be obtained by approximately solv-
ing the equation F(θold)s = ∇θ Oθold,μ(θ) |θ=θold , where s
represents the search direction. It is difficult to obtain this
search direction due to its prohibitive cost on forming full
matrix F(θold)

−1. In order to address this issue, we adopt

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MENG et al.: OFF-POLICY TRPO METHOD WITH MONOTONIC IMPROVEMENT GUARANTEE 5

Algorithm 1 Off-Policy TRPO
Require: Environment E, trust region bound δ, discount factor

γ , trace-decay parameter λ, collected steps P , replay times
B , replay buffer RB
Initialize policy network parameter θ
Initialize state value network parameter w
Initialize empty replay buffer RB
repeat

// Collect
Sample P steps s0:P ∼ πθ on environment E
Add S0:P = {s0:P , a0:P−1, r0:P−1, {μ(·|s j)|μ=πθ

}P−1
j=0 } to

replay buffer RB
// Update using on-policy data
Exploit on-policy data S0:P collected in previous step
Call UPDATE(data S0:P ) in Algorithm 2
// Update using off-policy data in RB
for k = 1 to B do

Sample off-policy data S0:P from RB
Call UPDATE(data S0:P ) in Algorithm 2

end for
until πθ converges

the conjugate gradient algorithm [25], [42] to approximately
obtain search direction s ≈ F(θold)

−1∇θ Oθold,μ(θ) |θ=θold

without forming full matrix F(θold)
−1.

Given search direction s, according to the trust region
constraint in (27), the maximal step length β satisfies

δ≈ 1

2
(θold−θ)T F(θold)(θold − θ) = 1

2
(βs)T F(θold)(βs). (28)

Next, we derive the maximal step length according to (28):
β = (2δ/(sT F(θold)s))1/2|θ=θold . We then obtain the reasonable
step size κ by performing the line search that starts with the
maximal step length β and shrinks exponentially until the
objective improves.

Based on the derived search direction s =
F(θold)

−1∇θ Oθold,μ(θ) |θ=θold and step size κ , we can
obtain the policy update scheme

θ = θold + κ F(θold)
−1∇θ Oθold,μ(θ) |θ=θold (29)

which can improve the objective function with trust region
constraint in (26) and guarantee monotonic improvement of
policies.

C. Off-Policy TRPO Algorithm

In this section, we will develop a practical method (off-
policy TRPO) based on the above policy update scheme,
which monotonically improves policy performance. The whole
algorithm is outlined in Algorithm 1. The update function is
summarized in Algorithm 2.

As described in Algorithm 1, the iteration for data collecting
and policy update repeats until policy function converges.
Specifically, at each iteration, we first collect data by interact-
ing with the black-box environment and insert these collected
data to replay buffer that is a commonly used technique for
experience replay [1], [16]. We then use the on-policy data

Algorithm 2 Update Function
function UPDATE(data S0:P )

Estimate {V (s j )}P
j=0 using state value network

Estimate {Q(s j , a j)}P−1
j=0 by RQ j = r j +

γ λρ j+1[RQ j+1 − V (s j+1)] + γ V (s j+1)

Obtain advantage values {A(s j , a j )}P−1
j=0 = {Q(s j , a j) −

V (s j )}P−1
j=0

Construct the optimization problem with trust region
constraint in Equation (26) in Section IV-A

Update policy parameter θ according to Equation (29) in
Section IV-B

Update parameter w of state value network V by mini-
mizing a mean squared error loss 1

P

∑P−1
j=0 (RQ j − V (s j ))

2

end function

collected in the previous step to perform the update function
in Algorithm 2. Finally, we sample data from the replay buffer
and take advantage of these sampled off-policy data to perform
the update function in Algorithm 2.

As described in Algorithm 2, we make use of the data
inputted to the function to update the policy network and
the state value network. Specifically, we first use these data
to estimate state value V (s j), where j indicates the tag
number of a sample among these data. We then estimate
state action value Q(s j , a j ) using an approximated variant of
retrace estimator [16], [43]: RQ j = r j + γ λρ j+1[RQ j+1 −
V (s j+1)]+γ V (s j+1), where ρ j+1 = min{1, ρ j+1} with ρ j+1 =
(π(a j+1|s j+1)/μ(a j+1|s j+1)) and λ represents the trace-decay
parameter. Different from the original retrace estimator [16],
[43], we use V (s j+1) to replace Q(s j+1, a j+1) to eliminate
the need for the action value network and simplify our
method. With the estimated state value V (s j ) and state action
value Q(s j , a j ) described above, we can obtain the advantage
value A(s j , a j) = Q(s j , a j) − V (s j). We next construct the
constrained optimization problem with trust region in (26) and
update policy parameter by (29). Subsequently, we adopt the
approximated retrace estimator as a target for learning the state
value network and update it by minimizing the mean squared
error loss.

V. EXPERIMENTS

To validate the proposed off-policy TRPO, we conduct
experiments using nine representative continuous control tasks.
We first describe the experimental setup that includes the
detailed configuration in our method and the continuous con-
trol tasks used in the experiments. We then analyze an impor-
tant hyperparameter, i.e., trust region bound, for the proposed
off-policy TRPO. We next compare the overall performance
of our method with other state-of-the-art methods. Finally,
we study its effectiveness in terms of monotonic improvement
guarantee, using off-policy data, and computational efficiency.

A. Setup

Neural network architectures for both policy and state value
functions are the fully connected neural network with two

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Results of the proposed off-policy TRPO regarding different δ values on HalfCheetah and Walker2d tasks. The shaded region indicates the standard
deviation over ten random seeds. The X-axis represents the timesteps in the environment. The Y -axis represents the average return.

hidden layers of dimension 64 and with tanh activations [5].
The output of the policy network specifies a Gaussian dis-
tribution to estimate policy [25]. The state value network
produces a single scalar value to estimate state value [5].
For experimental parameters, we use the discount factor γ =
0.995 [5] and set trace-decay parameter λ = 0.97 [33]. The
number of collected steps P is 5000 [33], and the value
of replay times B is 4 [16]. The size of the replay buffer
is 50 000 [16]. Note that the Adam optimizer [45] with a
learning rate of 0.001 is used for the minimization of the
loss for the state value network. The average return shown
in the experimental results is obtained by averaging over ten
seeded training runs [46]. Note that the returns for our method,
TRPO [25], Q-Prop [33], IPG [34], ACER [16], and Trust-PCL
[5] shown in the experiments are based on random sampling
actions (rather than greedy actions [5]) due to that optimal
policy are often stochastic, selecting different actions with
specific probabilities [37]. Notice that the experiments are
performed on a server using four Titan X GPU, 48 CPU cores,
and 128 GB of memory.

Environments for validation consist of nine representative
continuous control tasks, i.e., two OpenAI Gym tasks [47]
(MountainCarContinuous and Pendulum) and seven MuJoCo
tasks [48] (InvertedPendulum, Swimmer, Hopper, HalfChee-
tah, Walker2d, Ant, and Humanoid). The complexity of these
tasks lies in the dimensions of their state space and action
space. Such dimensions for these nine tasks are summarized
in Table I. Table I indicates that the tasks, i.e., Swimmer,
Hopper, HalfCheetah, Walker2d, Ant, and Humanoid, are more
complex than the other tasks, i.e., MountainCarContinuous,
Pendulum, and InvertedPendulum.

B. Results on Different Trust Region Bounds

In our method, the trust region bound, i.e., δ, is an
important hyperparameter since it is a tradeoff between
the utilization of off-policy data and the stability of
our method. In order to validate its effect and choose
a reasonable δ value, we compare our off-policy TRPO
methods with several different δ values (i.e., 10−4,
10−3.5, 10−3, 10−2.5, 10−2, 10−1.5, 10−1, 10−0.5, and 1.0).

TABLE I

LIST OF ENVIRONMENTS. ||S|| AND ||A|| SEPARATELY REPRESENT THE

DIMENSIONS OF STATE SPACE AND ACTION SPACE

Fig. 2. Maximal return curves of the proposed off-policy TRPO on
HalfCheetah and Walker2d tasks. Here, we focus on the proposed off-policy
TRPO with δ = 10−4, 10−3.5, 10−3, 10−2.5, 10−2, 10−1.5, 10−1, 10−0.5, and
1.0, and the above curves are based on these methods’ maximal return values
during training. The X-axis represents the δ values (logarithmic scale). The
Y -axis represents the average return.

Among these proportional δ values, 10−3, 10−2, 10−1, and
1.0 are chosen due to that these four values are commonly
used in representative trust region methods [16], [25], [33],
[34], [5] and δ values (i.e., 10−4, 10−3.5, 10−2.5, 10−1.5, and
10−0.5) are chosen for a comprehensive comparison. We show
the performance comparison of our methods with different
δ values during training in Fig. 1. We also compare their
maximal returns during training in Fig. 2 to clearly show how
their maximal returns vary with δ values.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MENG et al.: OFF-POLICY TRPO METHOD WITH MONOTONIC IMPROVEMENT GUARANTEE 7

Fig. 3. Results of off-policy TRPO compared with other off-policy trust region methods, i.e., Q-Prop, IPG, ACER, and Trust-PCL, on nine representative
continuous control tasks. The shaded region indicates the standard deviation over ten random seeds. Note that the return here is based on random sampling
actions. The X-axis represents the timesteps in the environment. The Y -axis represents the average return.

We conduct experiments on two representative tasks,
i.e., HalfCheetah and Walker2d, for their popularity [33], [34],
[46] and complexity [48]. As shown in Figs. 1 and 2, our
methods with small δ values (i.e., 10−4, 10−3.5, 10−3, and
10−2.5) achieve the same returns with more timesteps and
achieve smaller or comparable returns compared with the
method with δ = 10−2. Note that Fig. 2 shows that the return
with small δ value nonlinearly increases and then stabilizes as
δ value increases from 10−4 to 10−2. The methods with small
δ values are not as good as the method with δ = 10−2 due
to that the small trust region bound limits the utilization of
off-policy data. As shown in Figs. 1 and 2, our methods with
large δ values (i.e., 10−1.5, 10−1, 10−0.5, and 1.0) achieve the
same returns with more timesteps and achieve smaller returns
compared with the method with δ = 10−2. Fig. 2 shows that
the return with large δ value nonlinearly decreases as δ value
increases from 10−2 to 1.0. The methods with large δ values
are worse than the method with δ = 10−2 due to that the

large trust region bound causes the instability of optimization.
Results in Figs. 1 and 2 validate the effect of the trust region
bound as a tradeoff and show that δ value 10−2 is a reasonable
choice for trust region bound.

C. Comparison With the State-of-the-Art Methods

We compare our performance with four state-of-the-art trust
region methods (Q-Prop [33], IPG1 [34], ACER2 [16], and
Trust-PCL3 [5]) that exploit both on- and off-policy data.

1The implementations for TRPO, Q-Prop, and IPG used in this article can be
available at https://github.com/shaneshixiang/rllabplusplus, which is provided
from [33] and [34].

2The implementation for ACER with continuous action space used in
this article can be available at https://github.com/chainer/chainerrl, whose
hyperparameter setting is consistent with that in [16].

3The implementation for Trust-PCL used in this article can be available
at https://github.com/tensorflow/models/tree/master/research/pcl_rl, which is
provided from [5].

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. (a) Illustration of gridworld environment. This 2 × 2 gridworld environment consists of a state space S = {S0, S1, S2, SG} with a fixed starting
state S0 and a terminal state (a goal state) SG , an action space A = {up, down, right, left}, which deterministically causes the corresponding state
transitions, except that actions that would take the agent off the grid in fact leave the state unchanged [4]. The reward function in this environment
is r(s, a, s �) = −1 for all states s, s � and actions a. In order to further simplify this environment, we limit episodes terminate after three time
steps or if the agent has reached the goal state [44]. (b) Comparison of policy performance η curves among the proposed off-policy TRPO and other
off-policy trust region methods (Q-Prop, IPG, ACER, and Trust-PCL) on this gridworld task. The X-axis represents the number of update where data are
collected using ten random seeds. The Y -axis represents the value of policy performance η, which is calculated according to the definition of η in (6):
η(π) = Es0 ,a0,...[∑T −1

t=0 γ t r(st , at )] = ∑
i P({si

0, ai
0, ri

0, si
1, ai

1, ri
1, . . . , si

T −1, ai
T −1, ri

T −1, si
T })∑T −1

t=0 γ t r(si
t , ai

t ), where T denotes the total time steps of an
episode, and {si

0, ai
0, ri

0, si
1, ai

1, ri
1, . . . , si

T −1, ai
T −1, ri

T −1, si
T } represents the ith trajectory.

TABLE II

RESULTS FOR THE MAXIMAL AVERAGE RETURNS AND STANDARD DEVIATIONS DURING THE TRAINING PROCESS. FOR EACH TASK, THE NUMBER

AFTER THE AVERAGE RETURN AND STANDARD DEVIATION REPRESENTS THE NUMBER OF RESULTS THAT PERFORM SIGNIFICANTLY WORSE
THAN THE CURRENT RESULT ACCORDING TO WELCH’S T-TEST [49] WITH p-VALUE <0.05. BOLDED ARE SIGNIFICANTLY WORSE THAN

THE RESULT OF OUR METHOD ACCORDING TO WELCH’S T-TEST WITH p-VALUE < 0.05. NOTE THAT WELCH’S T-TEST IS A

COMMONLY USED TEST OF SIGNIFICANCE [50]–[52]

The comparison of the entire learning curves during train-
ing is shown in Fig. 3. From Fig. 3, we can observe
that the proposed off-policy TRPO achieves the same return
with fewer timesteps compared with other methods on most
tasks, which is mainly due to that monotonic improvement
guarantee stabilizes the policy update to accelerate policy
learning of our method. It can also be observed that the
proposed off-policy TRPO achieves a higher return than
other off-policy trust region methods during the training
timesteps on most tasks, which principally benefits from
stable policy learning provided by monotonic improvement
guarantee. As shown in Fig. 3, the gap between our method
and other compared methods on the simpler tasks, i.e.,
MountainCarContinuous, Pendulum, and InvertedPendulum,
is slight due to the simplicity of these tasks; this gap on
the more complex tasks, i.e., Swimmer, Hopper, HalfChee-
tah, Walker2d, Ant, and Humanoid, is noticeable due to
that monotonic improvement guarantee stabilizes our method,
making it more robust on complex tasks than compared
methods.

The comparison of the maximal average returns attained
during the training process is summarized in Table II.
As shown in Table II, the proposed off-policy TRPO achieves
the highest maximal average return during the training process
among these compared methods on most tasks, i.e., Swimmer,
Hopper, HalfCheetah, Walker2d, Ant, and Humanoid. On these
tasks, it is also noticeable that the returns achieved by our
method are significantly better than the ones achieved by other
most methods. In Table II, the proposed off-policy TRPO
achieves higher or comparable returns compared with other
methods on MountainCarContinuous, Pendulum, and Inverted-
Pendulum. Note that the returns of our method are significantly
better than the ones of a part of methods on these three tasks,
which is due to the simplicity of these tasks. In Table II, notice
that the number after the average return and standard deviation
represents the number of results that are significantly worse
than the current result, and the largest total number achieved
by our method demonstrates our superior performance. These
experimental results from Fig. 3 and Table II validate that
the proposed off-policy TRPO can make use of samples more

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MENG et al.: OFF-POLICY TRPO METHOD WITH MONOTONIC IMPROVEMENT GUARANTEE 9

Fig. 5. Results of off-policy TRPO compared with TRPO on nine representative continuous control tasks. The shaded region indicates the standard deviation
over ten random seeds. The X-axis represents the timesteps in the environment. The Y -axis represents the average return.

efficiently and achieve better performance in the majority of
continuous control tasks compared with other off-policy trust
region methods.

D. Effectiveness of the Proposed Off-Policy TRPO

1) Results on Monotonic Improvement Guarantee: We eval-
uate the monotonic improvement guarantee by validating the
policy performance η in the proposed off-policy TRPO can
be improved in each step. For a fair comparison, we conduct
experiments on the proposed off-policy TRPO and other
off-policy trust region methods (Q-Prop, IPG, ACER, and
Trust-PCL) to contrast their differences. These off-policy trust
region methods that can exploit both on- and off-policy data
are chosen for comparison due to that the monotonic improve-
ment guarantee in our method is for both on- and off-policy
data. The experiments of this comparison are performed on a
representative task, i.e., gridworld [4], which is simple enough

to calculate the value of policy performance η, as illustrated
in Fig. 4(a). The experimental results are shown in Fig. 4(b).
From Fig. 4(b), we observe that the policy performance η value
of the proposed off-policy TRPO monotonically increases as
the number of updates increases during all these updates.
We also note that, during some updates, the policy per-
formance η values of other methods (Q-Prop, IPG, ACER,
and Trust-PCL) decrease as the number of updates increases.
Results from Fig. 4(b) validate that, among these off-policy
trust region methods, only our method can guarantee the
monotonic improvement of policy performance η.

2) Results on Using Off-Policy Data: We evaluate the effec-
tiveness of using off-policy data by comparing our method
with the TRPO method that exploits on-policy data only.
In Fig. 5, the proposed off-policy TRPO achieves the same
returns with fewer timesteps than TRPO on these nine tasks,
which is because the utilization of off-policy data in our
method reduces the need for interaction with the environment.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE III

COMPARISON OF COMPUTATIONAL COST. THE AVERAGE TIMESTEPS PER SECOND [26] AND STANDARD DEVIATIONS DURING TRAINING OVER TEN
SEEDED RUNS. NOTE THAT THE RESULTS OF TRPO THAT CAN ONLY USE ON-POLICY DATA ARE INDICATED IN BOLDFACE. AMONG THE

METHODS THAT CAN USE BOTH ON- AND OFF-POLICY DATA (Q-PROP, IPG, ACER, TRUST-PCL, AND THE PROPOSED OFF-POLICY

TRPO), THE BEST RESULTS ARE INDICATED IN BOLDFACE

As shown in Fig. 5, our off-policy TRPO obtains higher returns
than TRPO on these tasks as a consequence of off-policy
training in our method. In Table II, it is noticeable that the
maximal average returns of our method are higher than those
of TRPO on these tasks. These results in Fig. 5 and Table II are
especially significant on the more complex tasks, i.e., Swim-
mer, Hopper, HalfCheetah, Walker2d, Ant, and Humanoid,
which is because the off-policy training in our method is stable
enough to help to solve these complex tasks. The results from
Fig. 5 and Table II validate that our off-policy TRPO can
outperform TRPO in terms of sample efficiency and maximal
average returns by making use of off-policy data.

3) Results on Computational Efficiency: We evaluate the
effectiveness of computational efficiency by comparing our
method with other trust region methods (TRPO, Q-Prop, IPG,
ACER, and Trust-PCL) in terms of wall-clock time [26].
The specific comparison of computational cost is summarized
in Table III, which shows the average timesteps per sec-
ond [26] during training. The results in Table III are obtained
with the same setup as previous experiments. As shown
in Table III, the proposed off-policy TRPO achieves the maxi-
mal timesteps per second among the off-policy trust region
methods, which can exploit both on- and off-policy data,
i.e., Q-Prop, IPG, ACER, Trust-PCL, and off-policy TRPO.
From Table III, we also note that our method achieves smaller
timesteps per second than TRPO due to that our method needs
extra computational time to train off-policy data. Nevertheless,
compared with TRPO that can only utilize on-policy data,
the utilization of off-policy data in our method can help reduce
on-policy interaction with the environment. The results shown
in Table III demonstrate that the proposed off-policy TRPO
can achieve better computational efficiency than the other
off-policy trust region methods (Q-Prop, IPG, ACER, and
Trust-PCL).

VI. CONCLUSION

In this article, we develop a new surrogate objective function
that can leverage both on- and off-policy data. We prove
that the maximization of the proposed function can guarantee
the monotonic improvement of policy performance. Based on
such a theoretical guarantee, we develop a practical method
(off-policy TRPO) that iteratively solves the optimization
problem of the proposed function. The proposed off-policy

TRPO can make use of both on- and off-policy data while
guaranteeing monotonic improvement for policy performance,
which provides a different insight for trust region methods
using off-policy data. Experimental results demonstrate that
our method improves the sample efficiency and average return
over the state-of-the-art trust region methods in the majority
of continuous control tasks. Moreover, experimental results
validate the effectiveness of the proposed off-policy TRPO in
terms of monotonic improvement guarantee, using off-policy
data, and computational efficiency.

Even though the computational complexity analysis in
terms of wall-clock time for these trust region methods in
Section V-D is commonly used [26], [53], [54], it could
be challenging to theoretically analyze their computational
complexity in terms of convergence. Note that it could be
interesting to apply our method to other fields of deep rein-
forcement learning, e.g., model-based reinforcement learning
and multi-agent reinforcement learning.

APPENDIX A
PROOF OF POLICY IMPROVEMENT BOUND IN THEOREM 1

The proof of Theorem 1 in this article uses the techniques
from the proof of Theorem 1 in [25]. Different from the proof
in [25], we derive the lower bound of policy performance
η(π̃) using our performance approximation Lπ,μ(π̃ ) in (10). In
this appendix, we first introduce these techniques from [25].
We then show the difference between η(π̃) and Lπ,μ(π̃) in
each timestep. Finally, we derive the lower bound of η(π̃) in
Theorem 1.

We start by briefly introducing a lemma from [25], which
shows that the policy performance difference η(π̃)−η(π) can
be decomposed as a sum of per-timestep advantage.

Lemma 1: Given two policies π and π̃

η(π̃) = η(π) + Eτ∼π̃

[ ∞∑
t=0

γ t Aπ (st , at)

]
. (30)

This expectation is taken over trajectories τ :=
(s0, a0, s1, a1, . . .), and the notation Eτ∼π̃ [· · · ] indicates
that actions are sampled from π̃ to generate τ . The proof of
Lemma 1 can be found in [25].

As defined in [25], Ā(s) represents the expected advantage
of π̃ over π at state s

Ā(s) = Ea∼π̃ (·|s)[Aπ(s, a)]. (31)

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MENG et al.: OFF-POLICY TRPO METHOD WITH MONOTONIC IMPROVEMENT GUARANTEE 11

Based on the definition of Ā(s), η(π̃) in Lemma 1 can be
represented as

η(π̃) = η(π) + Eτ∼π̃

[ ∞∑
t=0

γ t Ā(st )

]
. (32)

Lπ,μ(π̃) in Equation (10) can be written as

Lπ,μ(π̃) = η(π) + Eτ∼μ

[ ∞∑
t=0

γ t Ā(st )

]
. (33)

Note that the difference between η(π̃) and Lπ,μ(π̃) arises
from each timestep. In order to bound the difference in each
timestep, we subsequently introduce a measure of how much
two policies agree and its corresponding lemma from [25].

Definition 1: (p, q) is an α-coupled policy pair if it defines
a joint distribution (a, ã)|s, such that P(a �= ã) ≤ α for all s.
p and q will denote the marginal distributions of a and ã,
respectively.

That is, α-coupling means that, if we randomly choose a
seed for our random number generator and then we sample
from each of p and q after setting that seed, the results
will agree for at least fraction 1 − α of seeds [25]. The
corresponding lemma based on this definition is given as
follows:

Lemma 2: Given that π and π̃ are α-coupled policies and
their α value is απ for all s

| Ā(s)| ≤ 2απ max
s,a

|Aπ(s, a)|. (34)

The proof of Lemma 2 can be found in [25].
Based on these above techniques from [25], we next intro-

duce a lemma that bounds the difference between η(π̃) and
Lπ,μ(π̃) in each timestep and give its proof in detail.

Lemma 3: Let (π, π̃) and (μ, π̃) be α-coupled policy pairs,
and their α values separately are απ and αμ. Then

|Est ∼π̃ [ Ā(st )] − Est ∼μ[ Ā(st )]|
≤ 4απ(1 − (1 − αμ)t ) max

s,a
|Aπ(s, a)|. (35)

Proof: A coupling over the trajectory distributions can be
produced by coupled policy pair (μ, π̃). That is, after setting
the same random seed, the trajectories τ and τ̃ are separately
obtained according to policies μ and π̃ . We consider the
advantage of π̃ over π at timestep t ( Ā(st )) and decompose
its corresponding expectation based on whether μ agrees with
π̃ at all timesteps i < t .

Specifically, the decomposition of the expectation depends
on the number of times that μ and π̃ disagree before
timestep t . Here, we use nt to denote this number, i.e.,
the number of times that ai �= ãi for i < t . The specific
expectation decomposition for actions sampled using π̃ is
shown as follows:
Est ∼π̃ [ Ā(st)] = P(nt = 0)Est ∼π̃ |nt =0[ Ā(st)]

+ P(nt > 0)Est ∼π̃ |nt >0[ Ā(st )]. (36)

The expectation decomposition for actions sampled using μ
can similarly be represented as

Est ∼μ[ Ā(st )] = P(nt = 0)Est ∼μ|nt =0[ Ā(st )]
+ P(nt > 0)Est ∼μ|nt >0[ Ā(st )]. (37)

It is noticed that nt = 0 terms are equal [25]

Est ∼π̃ |nt =0[ Ā(st )] = Est ∼μ|nt =0[ Ā(st )] (38)

since nt = 0 indicates that μ and π̃ agreed on all timesteps
less than t . Subtracting (36) and (37), we obtain

Est ∼π̃ [ Ā(st )] − Est ∼μ[ Ā(st)] = P(nt > 0)(Est ∼π̃ |nt>0[ Ā(st )]
−Est ∼μ|nt>0[ Ā(st)]). (39)

Since (μ, π̃) is the α-coupled policy pair and its α value is
αμ, P(μ, π̃ agree at timestep i) ≥ 1 − αμ, so P(nt = 0) ≥
(1 − αμ)t , and

P(nt > 0) ≤ 1 − (1 − αμ)t . (40)

Based on the above observation, the following inequality can
be derived:

|Est ∼π̃ |nt >0[ Ā(st)] − Est ∼μ|nt >0[ Ā(st )]|
≤ |Est ∼π̃ |nt >0[ Ā(st )]| + |Est ∼μ|nt >0[ Ā(st )]|
≤ Est ∼π̃ |nt >0[| Ā(st )|] + Est ∼μ|nt >0[| Ā(st )|]
≤ 4απ max

s,a
|Aπ(s, a)| (41)

where the last inequality is derived according to Lemma 2.
By plugging (40) and (41) into (39), we finish the proof for

Lemma 3

|Est ∼π̃ [ Ā(st )] − Est ∼μ[ Ā(st )]|
≤ 4απ(1 − (1 − αμ)t ) max

s,a
|Aπ(s, a)|. (42)

Finally, we obtain the difference bound between η(π̃) and
Lπ,μ(π̃) and derive the lower bound of η(π̃) in Theorem 1.
Specifically, this difference bound is obtained by summing the
difference bound in Lemma 3 [25]. Subtracting (32) and (33)
and defining � = maxs,a |Aπ(s, a)|

|η(π̃) − Lπ,μ(π̃)| =
∞∑

t=0

γ t |Est ∼π̃ [ Ā(st )] − Est ∼μ[ Ā(st )]|

≤
∞∑

t=0

γ t · 4�απ(1 − (1 − αμ)t)

= 4�απ

(
1

1 − γ
− 1

1 − γ (1 − αμ)

)

= 4�γ απαμ

(1 − γ )(1 − γ (1 − αμ))

≤ 4�γ

(1 − γ )2
απαμ. (43)

Based on the difference bound in (43), the lower bound of
η(π̃) can be derived as

η(π̃) ≥ Lπ,μ(π̃) − 4�γ

(1 − γ )2
απαμ. (44)

In order to replace απ and αμ by the TV divergence,
we need to use [55, Proposition 4.7], which describes the
correspondence between TV divergence and coupled random
variables. Such correspondence is described as follows.

Suppose that pX and pY are distributions with
DTV(pX ||pY ) = α. Then, there exists a joint distribution

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

(X, Y) whose marginals are pX and pY , for which X = Y
with probability 1 − α.

Such correspondence means that, if we have two poli-
cies p and q , we can define an α-coupled policy pair
(p, q) by setting the α = maxs DTV(p(·|s) || q(·|s)) [25].
Thus, taking απ = maxs DTV(π(·|s) || π̃(·|s)) and αμ =
maxs DTV(μ(·|s) || π̃(·|s)) in (44), Theorem 1 follows.

APPENDIX B
UPPER BOUND OF αμ

Note that TV divergence DTV(μ(·|s) � πnew(·|s)) used in
Theorem 1 satisfies

DTV(μ(·|s) � πnew(·|s)) ≤ DTV(μ(·|s) � πold(·|s))
+ DTV(πold(·|s) � πnew(·|s)). (45)

Thus, αμ can be represented as

αμ = max
s

DTV(μ(·|s) � πnew(·|s))
≤ max

s
[DTV(μ(·|s) � πold(·|s))

+ DTV(πold(·|s) � πnew(·|s))]
≤ max

s
DTV(μ(·|s) � πold(·|s))

+ max
s

DTV(πold(·|s) � πnew(·|s))
= Dmax

TV (μ, πold) + Dmax
TV (πold, πnew). (46)

APPENDIX C
DEFINITIONS OF THE AVERAGE KL DIVERGENCE

The formulations of average KL divergence are defined as

D
ρμ

KL(θold, θ) := Es∼ρμ
[DKL(πθold(·|s) � πθ(·|s))] (47)

D
ρμ,sqrt
KL (μ, θold) := Es∼ρμ

[√DKL(μ(·|s) � πθold(·|s))] (48)

D
ρμ,sqrt
KL (θold, θ) := Es∼ρμ

[√DKL(πθold(·|s) � πθ(·|s))]. (49)

REFERENCES

[1] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, 2015.

[2] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

[3] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, p. 354, 2017.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[5] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Trust-PCL: An
off-policy trust region method for continuous control,” in Proc. Int. Conf.
Learn. Represent., 2018, pp. 1–14.

[6] A. Gruslys, W. Dabney, M. G. Azar, B. Piot, M. Bellemare, and
R. Munos, “The reactor: A fast and sample-efficient actor-critic agent
for reinforcement learning,” in Proc. Int. Conf. Learn. Represent., 2018,
pp. 1–18.

[7] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging the gap
between value and policy based reinforcement learning,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 2775–2785.

[8] B. O’Donoghue, R. Munos, K. Kavukcuoglu, and V. Mnih, “Combining
policy gradient and Q-learning,” in Proc. Int. Conf. Learn. Represent.,
2017, pp. 1–15.

[9] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–21.

[10] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. 13th AAAI Conf. Artif. Intell., 2016,
pp. 2094–2100.

[11] Z. Wang et al., “Dueling network architectures for deep reinforcement
learning,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[12] M. Hessel et al., “Rainbow: Combining improvements in deep rein-
forcement learning,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 3215–3222.

[13] W. Meng, Q. Zheng, L. Yang, P. Li, and G. Pan, “Qualitative mea-
surements of policy discrepancy for return-based deep Q-network,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 10, pp. 4374–4380,
Oct. 2020.

[14] L. Yang, M. Shi, Q. Zheng, W. Meng, and G. Pan, “A unified approach
for multi-step temporal-difference learning with eligibility traces in
reinforcement learning,” in Proc. 27th Int. Joint Conf. Artif. Intell.,
Jul. 2018, pp. 2984–2990.

[15] L. Shi, S. Li, L. Cao, L. Yang, and G. Pan, “TBQ(σ ): Improving effi-
ciency of trace utilization for off-policy reinforcement learning,” in Proc.
18th Int. Conf. Auto. Agents MultiAgent Syst., 2019, pp. 1025–1032.

[16] Z. Wang et al., “Sample efficient actor-critic with experience replay,” in
Proc. Int. Conf. Learn. Represent., 2017, pp. 1–20.

[17] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–14.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.
[Online]. Available: http://arxiv.org/abs/1707.06347

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 1856–1865.

[20] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 214–223.

[21] L. Shi, S. Li, Q. Zheng, M. Yao, and G. Pan, “Efficient novelty
search through deep reinforcement learning,” IEEE Access, vol. 8,
pp. 128809–128818, 2020.

[22] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–14.

[23] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 1928–1937.

[24] E. Imani, E. Graves, and M. White, “An off-policy policy gradient
theorem using emphatic weightings,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 96–106.

[25] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[26] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, “Scalable
trust-region method for deep reinforcement learning using Kronecker-
factored approximation,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 5279–5288.

[27] R. Akrour, A. Abdolmaleki, H. Abdulsamad, J. Peters, and G. Neumann,
“Model-free trajectory-based policy optimization with monotonic
improvement,” J. Mach. Learn. Res., vol. 19, no. 1, pp. 565–589, 2018.

[28] G. Liu et al., “Trust region evolution strategies,” in Proc. 33rd AAAI
Conf. Artif. Intell., 2019, pp. 4352–4359.

[29] H. Liu, Y. Wu, and F. Sun, “Extreme trust region policy optimization
for active object recognition,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 6, pp. 2253–2258, Jun. 2018.

[30] Y. Yu, S.-Y. Chen, Q. Da, and Z.-H. Zhou, “Reusable reinforcement
learning via shallow trails,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 6, pp. 2204–2215, Jun. 2018.

[31] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Opti-
mal and autonomous control using reinforcement learning: A survey,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2042–2062,
Jun. 2018.

[32] Y. Yang, Z. Guo, H. Xiong, D.-W. Ding, Y. Yin, and D. C. Wunsch,
“Data-driven robust control of discrete-time uncertain linear systems via
off-policy reinforcement learning,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 30, no. 12, pp. 3735–3747, Dec. 2019.

[33] S. Gu, T. Lillicrap, Z. Ghahramani, R. E. Turner, and S. Levine,
“Q-prop: Sample-efficient policy gradient with an off-policy critic,” in
Proc. Int. Conf. Learn. Represent., 2017, pp. 1–13.

[34] S. S. Gu, T. Lillicrap, R. E. Turner, Z. Ghahramani, B. Schölkopf, and
S. Levine, “Interpolated policy gradient: Merging on-policy and off-
policy gradient estimation for deep reinforcement learning,” in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 3846–3855.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MENG et al.: OFF-POLICY TRPO METHOD WITH MONOTONIC IMPROVEMENT GUARANTEE 13

[35] X. Xu, Z. Huang, L. Zuo, and H. He, “Manifold-based reinforcement
learning via locally linear reconstruction,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 28, no. 4, pp. 934–947, Apr. 2017.

[36] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. Int. Conf. Mach.
Learn., 2014, pp. 387–395.

[37] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Proc. Adv. Neural Inf. Process. Syst., 2000, pp. 1057–1063.

[38] T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” in Proc.
Int. Conf. Mach. Learn., 2012, pp. 179–186.

[39] S. Kakade and J. Langford, “Approximately optimal approximate
reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2002,
pp. 267–274.

[40] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.

[41] D. Pollard. (2000). Asymptopia: An Exposition of Statistical Asymptotic
Theory. [Online]. Available: http://www.stat.yale.edu/pollard/Books/
Asymptopia

[42] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” J. Res. Nat. Bur. Standards, vol. 49, no. 6,
pp. 409–436, 1952.

[43] R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare, “Safe and
efficient off-policy reinforcement learning,” in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 1054–1062.

[44] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev, “Time limits
in reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 4045–4054.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–15.

[46] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in Proc. 32nd AAAI Conf.
Artif. Intell., 2018, pp. 3207–3214.

[47] G. Brockman et al., “OpenAI gym,” 2016, arXiv:1606.01540. [Online].
Available: http://arxiv.org/abs/1606.01540

[48] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2012, pp. 5026–5033.

[49] B. L. Welch, “The generalization of student’s’ problem when sev-
eral different population variances are involved,” Biometrika, vol. 34,
nos. 1–2, pp. 28–35, 1947.

[50] R. Akrour, J. Pajarinen, J. Peters, and G. Neumann, “Projections for
approximate policy iteration algorithms,” in Proc. Int. Conf. Mach.
Learn., 2019, pp. 181–190.

[51] J. Pajarinen, H. L. Thai, R. Akrour, J. Peters, and G. Neumann,
“Compatible natural gradient policy search,” Mach. Learn., vol. 108,
nos. 8–9, pp. 1443–1466, Sep. 2019.

[52] H. W. Park, I. Grover, S. Spaulding, L. Gomez, and C. Breazeal,
“A model-free affective reinforcement learning approach to personal-
ization of an autonomous social robot companion for early literacy
education,” in Proc. 33rd AAAI Conf. Artif. Intell., 2019, pp. 687–694.

[53] Y. Sun, X. Yuan, W. Liu, and C. Sun, “Model-based reinforcement
learning via proximal policy optimization,” in Proc. Chin. Autom. Congr.
(CAC), Nov. 2019, pp. 617–629.

[54] J. Nam, Y.-B. Kim, E. L. Mencia, S. Park, R. Sarikaya, and J. Fürnkranz,
“Learning context-dependent label permutations for multi-label classifi-
cation,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 4733–4742.

[55] D. A. Levin and Y. Peres, Markov Chains Mixing Times. Providence,
RL, USA: American Mathematical Society, 2017.

Wenjia Meng received the B.E. degree in software
engineering from Shandong University, Jinan, China,
in 2014. She is currently pursuing the Ph.D. degree
with the College of Computer Science and Technol-
ogy, Zhejiang University, Hangzhou, China.

Her research interests include reinforcement learn-
ing and artificial intelligence.

Qian Zheng received the B.E. and Ph.D. degrees
in computer science from Zhejiang University,
Hangzhou, China, in 2011 and 2017, respectively.

He is currently a Research Fellow with the
ROSE Lab, Nanyang Technological University,
Singapore. He has published several articles in
international journals and conferences, such as the
IEEE TRANSACTIONS ON PATTERN ANALYSIS

AND MACHINE INTELLIGENCE (TPAMI), IEEE
TRANSACTIONS ON INFORMATION FORENSICS
AND SECURITY (TIFS), IEEE TRANSACTIONS

ON IMAGE PROCESSING (TIP), IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), and IEEE International Conference on
Computer Vision (ICCV).

Dr. Zheng has served on the Executive Area Chairs Committee (EACC) of
Vision And Learning SEminar (VALSE). He is also a reviewer of the IEEE
TIP, CVPR, Asian Conference on Computer Vision (ACCV), and British
Machine Vision Conference (BMVC).

Yue Shi received the B.E. degree in computer
science from Zhejiang University, Hangzhou, China,
in 2018, where he is currently pursuing the master’s
degree with the College of Computer Science and
Technology.

His research interests include machine learning
and reinforcement learning.

Gang Pan (Member, IEEE) received the B.Eng. and
Ph.D. degrees from Zhejiang University, Hangzhou,
China, in 1998 and 2004, respectively.

He is currently a Professor with the College
of Computer Science and Technology and the
Vice-Director of the State Key Lab of CAD&CG,
Zhejiang University. He has coauthored more
than 100 refereed articles and has 39 patents
granted. His interests include artificial intelligence,
brain-inspired computing, brain–machine interfaces,
pervasive computing, and computer vision.

Dr. Pan was a recipient of NSF for Distinguished Young Scholars in 2019,
the IEEE TCSC Award for Excellence (Middle Career Researcher) in 2018,
and the CCF-IEEE CS Young Computer Scientist Award in 2016. He also
received many technical awards, including the TOP-10 Achievements in
Science and Technology in Chinese Universities in 2016, the National
Science and Technology Progress Award in 2015, the Best Paper Award of
ACM UbiComp’16, and the IEEE UIC Test-of-Time Paper Award in 2019.
He also serves as an Associate Editor for the IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS, the IEEE TRANSACTIONS

ON CYBERNETICS, and Pervasive and Mobile Computing.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 29,2021 at 03:10:02 UTC from IEEE Xplore.  Restrictions apply. 


