
Received June 22, 2020, accepted July 7, 2020, date of publication July 13, 2020, date of current version July 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3008735

Efficient Novelty Search Through Deep
Reinforcement Learning
LONGXIANG SHI 1, SHIJIAN LI1, (Member, IEEE), QIAN ZHENG2,
MIN YAO1, AND GANG PAN 1, (Member, IEEE)
1College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

Corresponding author: Shijian Li (shijianli@zju.edu.cn)

ABSTRACT Novelty search, which was inspired by the nature that evolves creatures with diversity, has
shown great potential in solving reinforcement learning (RL) tasks with sparse and deceptive rewards. How-
ever, most of the existing novelty search methods evolve the populations through hybrization and mutation,
which is inefficient in diverging populations. In this paper, we propose a method which incorporates deep RL
with novelty search to improve the efficiency of diverging the populations for novelty search.Wefirst propose
a strategy that improves the novelty of individuals generated by genetic algorithm using reinforcement
learning. Based on this strategy, we propose a framework that incorporates deep RL with novelty search,
and then derive an algorithm to improve the search efficiency of the novelty search for continuous control
tasks. Our experimental results show that our method can improve the search efficiency of novelty search and
can also provide a competitive performance compared to some of the existing novelty search methods. The
implementation of our method is available at: https://github.com/shilx001/NoveltySearch_Improvement.

INDEX TERMS Reinforcement learning, novelty search, evolutionary computing, deep learning.

I. INTRODUCTION
In reinforcement learning (RL), an agent learns to find a
policy in an unknown environment to maximize some notion
of cumulative reward obtained from the environment [1].
Learning is especially challenging when the reward function
is spar se or deceptive (i.e., the reward function contains
local optima). In such cases, the agent is fragile to getting
stuck in local optima and unable to properly learn if the
exploration strategy fails to explore the whole environment
efficiently [2], [3]. While many pioneering works have pro-
posed to promote exploration based on state visitation fre-
quency [3]–[5], a different approach called novelty search
encourages the agent to exhibit different behaviors from the
past [2], [6], [7]. Inspired by the nature that evolves the crea-
tures with diversity, novelty search has shown great potential
in solving the challenging robotic control tasks with reward
functions that are sparse or deceptive [6], [8], [9].

For novelty search methods, one critical issue that deter-
mines the searching efficiency is how to efficiently evolve the
populations that are different from the historical ones. Many
existing works have studied this issue. One famous approach

The associate editor coordinating the review of this manuscript and

approving it for publication was Hao Luo .

is to introduce new objectives and optimize it together with
novelty, and thus yielding to multi-objective optimization.
Such combination can be found in [6], [8], [10], [11]. Evolv-
ing the topologies of the policy networks when perform-
ing novelty search is an alternative way, which can also
improve the efficiency of novelty search. Such method can be
found in [12], [13]. However, despite the modified objective
function or improved policy representation, the above two
approaches still produce new individuals through hybridiza-
tion and mutation, which has relatively low efficiency in
diverging the populations. Moreover, as a category of black-
box optimization method, evolutionary methods always have
a low data efficiency, since the samples generated for nov-
elty search are only used for evaluation of novelty or other
objective functions and then discarded [14].

Several works have noticed this fact and try to reuse the
samples generated by novelty search to obtain the desired
populations. For instance, in [15], transfer learning is used
to learn a different task with the samples generated when
performing novelty search in a specific task. Cully et al. [9]
propose a trial and error framework that uses novelty search
to explore the environment and collect the samples and then
train the samples with a map-based Bayesian algorithm to
improve the policy. Kim et al. [16] propose a method that

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 128809

https://orcid.org/0000-0003-4334-1182
https://orcid.org/0000-0002-4049-6181
https://orcid.org/0000-0003-2143-2438

L. Shi et al.: Efficient Novelty Search Through Deep RL

reuses the samples generated by novelty search with an online
adaption process that models the desired behaviors. However,
existing works for utilizing the samples generated by the
novelty search are mostly focused on finding some behav-
iors for a specific task. Using the historical data to improve
the efficiency of evolving diversity populations for novelty
search is absent.

In this paper, we attempt to reuse the samples in order
to improve the efficiency of diverging the populations for
novelty search. We analyze the distribution of behavior char-
acteristics in one generation of novelty search, and propose
a strategy that improves the novelty of individuals based on
reusing the generated samples with RL. We then propose a
framework that incorporates deep RL with novelty search
to improve the search efficiency of novelty search. We also
propose an algorithm based on the proposed framework for
tasks with continuous action spaces. The proposed method is
evaluated on 3 maze tasks of the well-known RL benchmark
environments [17], and the results show that our method can
improve the search efficiency of novelty search, and can also
achieve a competitive performance comparing to some of the
existing novelty search methods.

Our contribution can be summarized as below:

• We propose a strategy for evolving diversity individuals
of novelty search. We show it can improve the novelty of
the individuals by reusing the historical samples gener-
ated by novelty search based on off-policy RL methods.

• Based on the above strategy, we propose a frame-
work that incorporates deep RL with novelty search to
improve the search efficiency of novelty search.

• We proposed an algorithm named NS-RL to improve
the search efficiency of novelty search for continu-
ous control tasks. Our experimental results show that
our method can improve the search efficiency of nov-
elty search, and can also provide competitive perfor-
mance compared to some of the existing novelty search
methods.

II. RELATED WORKS
Here we summarized the related works in two categories:
improving the efficiency of novelty search and improving the
data efficiency of blackbox optimization methods.

A. IMPROVING THE EFFICIENCY OF NOVELTY SEARCH
As an optimization method without objective, several exist-
ing works attempt to improve the efficiency of the novelty
search by introducing new objectives, and thus yielding to
multi-objective optimization [18]. For example, the combi-
nation of novelty and fitness are often adopted to evolve
the diversity populations [2], [6]. In [8], the authors intro-
duce local competition and global competition along with
novelty to improve the efficiency of novelty search. Qual-
ity diversity methods also involve more manually designed
additional functions, or additional novelty functions and
usingmulti-objective optimizationmethod to conduct novelty

search, which makes the novelty search even more com-
plex [6]. Mouret and Clune [10] propose MAP-Elites algo-
rithm, to illuminates the fitness potential of each area of the
feature space. More recently, Cully and Demiris [11] propose
a unifying framework of QD-optimization framework which
combines multi-dimensional archive of phenotypic elites and
novelty search with local competition, with a new selection
method based on collection.

Evolving the topologies of the policy networks as well
as the novelty together and thus improving the efficiency of
novelty search is another approach. The NEAT algorithm [19]
is popular in many novelty search methods, such as [12], [20]
and [13]. Risi et al. [21] propose a method based on evolving
plastic networks to improve the efficiency of novelty search.

From the perspective of evolutionary methods, the above
two approaches produce new populations through hybridiza-
tion and mutation, which has a relatively low efficiency in
diverging the populations. Moreover, the data efficiency of
the above methods are also low, since the samples generated
are only used for evaluation of novelty or other objective
function. Several works have proposed to address this issue.
For example, in [15], transfer learning method is used to learn
a different task with the samples generated when performing
novelty search in a specific task. Cully et al. [9] propose a trial
and error framework that allows robots to adapt to damage
with high efficiency. The framework first uses novelty search
to explore the environment and collect the samples and then
train the samples with a map-based Bayesian algorithm to
improve the policy. Kim et al. [16] propose a method that
reuses the samples generated by novelty search with an online
adaption process that models the desired behaviors. However,
the existing works for utilizing the samples generated by
novelty search are focused on finding some behaviors towards
a specific task. For the novelty search method of those works
still produce new individuals through hybridization andmuta-
tion, which is inefficient in diverging the populations. Using
the samples generated to improve the efficiency of evolv-
ing diversity populations of novelty search have not been
explored.

Comparing to previous works, in this paper we consider
a different approach that reuses the generated samples by
RL to diverge the populations for novelty search, which can
improve the search efficiency of novelty search as well.

B. IMPROVING THE DATA EFFICIENCY OF BLACKBOX
OPTIMIZATION METHODS
Several researchers have explored the combination of black-
box optimization methods with deep RL. For example,
the goal exploration process-policy gradient (GEP-PG) [22]
adopts a goal exploration process to fill the replay buffer
and then uses DDPG [23] to learn the policies. The GEP is
very close to evolution methods. Their experiments show that
GEP-PG is more sample-efficient and have a low variance
compared to DDPG. However, their combination does not
improve the efficiency of gradient update of DDPG. Evolu-
tion guided RL (ERL) [14] introduces a hybrid algorithm that

128810 VOLUME 8, 2020

L. Shi et al.: Efficient Novelty Search Through Deep RL

periodically inserts the DDPG agent to the evolution opti-
mization process, and improves the stability and efficiency
in learning and exploration. In [24], the authors analyze the
optimization problems with a surrogate gradient, and show
that incorporating ES into surrogate gradient can improve
the performance and efficiency of traditional RL methods.
In CEM-RL [25], the authors combine the cross-entropy
method and DDPG/TD3 [26] to accelerate the learning and
improve the performance of of deep RL. However, the com-
bination of novelty search and deep RL is absent. In this paper
we explore to use deep RL method to improve the efficiency
of novelty search.

III. PRELIMINARIES
In this section, we introduce some basic concepts, notations
about reinforcement learning and novelty search.

A. REINFORCEMENT LEARNING
RL problems can be mathematically formulated as a Marko-
vian Decision Process (MDP): (S,A, γ,P,R), where S is
the state space, A is the action space, γ ∈ [0, 1] is the
discount factor, and P is the transition function that maps
each state-action pair (s, a) ∈ (S,A) to some distribution
over S. In this paper we consider the standard RL setup: an
agent interacting with the environment in discrete time steps;
at each time step t , the agent observes a state s ∈ S, takes
an action under some policy π , and receives a scalar reward
r ∈ R. A policy π describes the agent’s behavior, which
is a probability distribution that maps a state to an action:
π (a|s) : S × A→ [0, 1].

The return from a state s is defined as the total discounted
future reward: Gt =

∑T
i=t γ

i−tr(si, ai), where T is the
terminal state. The state-action valueQ is a mapping on S×A
to R, which describes the expected discounted future reward
when taking action a at observation s by following policy π :

Q(s, a) = Eπ (r1 + γ r2 + . . .+ γ T−1rT |s0 = s, a0 = a)

The goal of RL is to find an optimal policy which maxi-
mizes the expected return from the starting state:

J = maxEst∼ρ[Gt |st ,at]

Here, ρ is the state distribution under policy π .
The Bellman equation describes the recursive relationship

in state-action value, and it’s the fundamental principle of
many RL algorithms:

Q(st , at) = E[r(st , at)+ γEQ(st+1, at+1)]

In RL, learning is off-policy if the target policywe optimize
is different from the policy that interacts with the environment
and generates the learning samples. Off-policy RL is attrac-
tive because it can reuse the samples that store in a buffer
repeatedly, which leads to high data efficiency.

One popular off-policy RL method for dealing with
continuous task is the deep deterministic policy gradi-
ent (DDPG) [23], which adopts actor-critic in policy gradient.

The actor of DDPG optimizes the policy directly by using
the deterministic policy gradient theorem [27]. Denoting
πθπ (s|θπ) and Q(s, a|θQ) as the parameterized policy π and
the action-value function Q respectively, the gradient of the
loss function J can be calculated as:

∇θπ J = Est∼ρ[∇Q(s, a|θ
Q)|s=st ,a=π(st)

· ∇θππ (s|θπ)|s=st] (1)

The loss JQ of the critic function can be calculated as:

JQ = Est∼ρ[(rt + Q(st+1, at+1)|θQ − Q(st , at)|θQ)
2] (2)

During learning, gradient ascent is performed on the actor
function to maximize J , while gradient descent is performed
on the critic function to minimize JQ.

B. NOVELTY SEARCH
When the reward is sparse or deceptive, RL becomes espe-
cially challenging because the agent can seldom retrieve use-
ful information from the environment. The agent is fragile to
getting stuck in local optima and fails to proper learn. Novelty
search is a variant of genetic algorithm that is less sensitive
to the sparse and deceptive reward. It evolves the popula-
tion based on how different their behaviors are from the
ones that have already been evolved [15]. In novelty search,
each policy πθ is evaluated in the environment to evaluate
its behavior. Based on its behavior, a domain-independent
behavior characteristic (BC) is assigned to the policy. The
BC for a policy is usually defined as a function that maps
from its trajectory to some features of its trajectory. Denoting
trajectory(π) = {< s1, a1, r1, s2 >,< s2, a2, r2, s3 > . . . <

sT−1, aT−1, rT−1, sT >} is the trajectory generated by policy
πθ , f is a feature function, then the behavior characteristic
function bc(πθ) can be defined as:

bc(πθ) = f (trajectory(πθ)) (3)

For example, in the 2-D maze environment, the behavior
characteristics of the policy πθ could be the final position of
the agent after executing policy πθ . The behavior characteris-
tics of the past policies are stored in the archive A. The novelty
N (πθ ,A) of πθ is then calculated by measuring the average
L2-norm distance of the K -nearest neighbours of bc(πθ):

N (πθ ,A) =
1
|K |

∑
j∈K

‖bc(πθ)− bc(πj)‖2

K = kNN (bc(πθ),A)

= {bc(π1), bc(π2), . . . , bc(πj)} (4)

The policy can be then optimized by maximizing the
novelty of each generation using genetic algorithms [20] or
evolution strategies [2]. In this paper we will focus on the
novelty search method optimized by genetic algorithm [2].

IV. METHOD
In this section, wewill introduce ourmethod in detail.Wefirst
illustrate the data-driven novelty improvement method that

VOLUME 8, 2020 128811

L. Shi et al.: Efficient Novelty Search Through Deep RL

uses RL to reduce the overlap of the samples regarding the
historical ones, then describe the overall framework. Finally,
the practical algorithm is introduced.

A. NOVELTY IMPROVEMENT THROUGH REUSING THE
HISTORICAL SAMPLES
When performing novelty search with genetic algorithm,
in each generation, we first get an initial population of poli-
cies and then evaluate the novelty of each policy. The policies
with a high novelty will survive and produce offspring in
the next generation. According to the definition of novelty in
Equation 4, policies with larger novelty denote their behavior
characteristics (BCs) are far away from the historical sam-
ples, i.e., the outlier in BC space. In contrast, policies with
lower novelty denote their BC are near the historical samples.
If we can improve the policies with lower novelty to fill in the
gap between high novelty policies and low novelty policies,
then we can produce more individuals with high novelty.
In addition, the BC distribution of one generation could be
sparser, which can encourage the policies to explore the areas
that are less sparse regarding the historical ones. Figure 1
gives an illustration of our motivation in a 2-D BC space. The
blue points denote the historical BC samples in the archive,
the orange points denotes the new generated BC samples by
the genetic algorithm. If the improved BC (red points) are
located in the middle of the outliers and the historical ones,
the ‘‘overlap’’ between the new population and past policies
could be reduced, and the BC distribution of one generation
could be sparser.

FIGURE 1. Illustration of 2-D distribution of the two dimensional behavior
characteristics in one generation. The blue points denote the historical BC
samples in the archive, the orange points denote the new generated BC
samples by the genetic algorithm in one generation. If we can generate
some new policies (red points) with BC that can fill the gap between high
novelty policies and low novelty policies, the BC distribution of one
generation could be sparser. Therefore we can encourage the policies to
explore the areas that are less sparse regarding the historical ones.

Specifically, if the BCs of the policies are only determined
by their terminal states of one episode, which is quite pop-
ular in many novelty search methods [18], we can define a
distance function to measure each state of the trajectory to
the target BC when executing the policy. Denoting sπi as the
ith state observed during executing policy π , BC(π∗) as the
target BC of policy π∗ and sπ

∗

T is the final state of policy π∗,
such distance can be described as:

D(sπi ,BC(π
∗)) = ‖sπi − sT ‖ (5)

Here sT denotes the terminal states of execution. The above
equation can be used as the per-step return for policy improve-
ment in RL algorithms. We can then define a reward function
for RL:

R(si, ai, si+1) = −D(sπi ,BC(π
∗))+ b (6)

Here b is a hyperparameter that denotes the distance to the
target BC. Denoting π ′ as the policies that BCs are in the
middle between historical BC and target BC,< si, ai, si+1 >
as the ith state transition pair stored in the historical trajectory,
obtaining a policy π ′ based on a policy πθ can be formulated
as optimizing the following loss function:

Jθ = maxEs∼ρπθ ,a∼πθ [
T∑
i=1

γ TR(si, ai, si+1)] (7)

We can then adopt off-policy RL methods to reuse the tra-
jectories to improve the diversity of the population obtained
from genetic algorithm. Specifically, if we use policy gra-
dients method to optimize the policies, the hyperparameter
b can be omitted because it does not contain any policy
parameters:

∇Jθ = ∇Es∼ρπθ ,a∼πθ [
T∑
i=1

γ T (−D(sπi ,BC(π
∗))+ b)]

= ∇Es∼ρπθ ,a∼πθ [
T∑
i=1

γ T (−D(sπi ,BC(π
∗)))] (8)

In the next section we will describe a framework that uses
policy gradient for instance.

B. EFFICIENT NOVELTY SEARCH FRAMEWORK
Our efficient novelty search framework combines the genetic
algorithm with deep RL method, as shown in Figure 2. The
deep RL agent maintains a unique actor and critic function.
For each generation of the genetic algorithm, we sort the
policies (also known as actors) based on their novelty, and
use the BC of the top novelty policy as the target BC. All the
trajectories are stored in the replay buffer. The last k policies
with the lowest novelty are copied to the deep RL agent, and
the RL agent then performs off-policy policy gradient using
the reward calculated based on Equation 6. The deep RL
agent then uses policy gradient algorithm to improve the poli-
cies towards the direction of maximum novelty, as described
above.

Since the goal of the critic networks changes for each
iteration, to further improve the network reusability of critic
networks, we also use universal value function approxima-
tors (UVFA) [28] in the critic function. As illustrated in the
framework, we introduce the goal g in the critic function.
By using theUVFA,we are able to use a unique critic function
to deal with the different goals and different reward functions.
Through sampling m mini-batch of samples from the replay
buffer, the loss of the critic function can be written as below:

yi =

{
γQ(si+1, ai+1, gi+1)+ R(si, ai, gi), i+1 6= T
R(si, ai, gi), i+ 1 = T .

128812 VOLUME 8, 2020

L. Shi et al.: Efficient Novelty Search Through Deep RL

FIGURE 2. Efficient novelty search framework. Our framework
incorporates deep RL with novelty search. The novelty of the populations
can be improved by reusing the historical samples with deep RL.

JQ =
1
m

m∑
i=1

[yi − Q(si, ai, gi)]2 (9)

During the iteration, the goal g is set to the BC of the
top novelty actor of the population. After performing policy
improvement with off-policy policy gradient, the actors with
lower novelty in the population will be replaced with the
original ones.

C. NS-RL ALGORITHM
Based on the above framework, the psudocode of the pro-
posed algorithm is illustrated in Algorithm 1. We name it
NS-RL. Before the algorithm begins, the initial population
for genetic algorithm is initialized. For each iteration of the
genetic algorithm, we first evaluate the novelty of each policy
in one generation, store the trajectories of each episode in
the experience replay, and save the BCs of the policies to
the archive. The elites for each generation are guaranteed
to survive in the next generation. For the last k policies
with lowest novelty, we conduct off-policy policy gradient to
update the parameters of them. The novelty of the improved
policies are then evaluated and their trajectories are also
stored in the experience replay. If the novelty of the policy is
improved after learning, then we replace the corresponding
policy parameters in the population. We here use DDPG [23]
in the RL part for tasks with continuous action spaces (as we
used in the experiments), and the tasks with discrete action
spaces can be easily modified by using actor-critic methods.
We also adopt the target networks for both actor and critic
functions, which is popular in deep RL methods to further
improve the stability of deep RL [23]. The target networks
are a copy of actor and critic networks and are used for
calculating the target values. Denoting θ ,� as the parameters
of actor and critic networks, θ ′,�′ as the parameters of target
actor and critic networks, the target networks are updated by
a soft update equation:

θ ′← τθ + (1− τ)θ ′, �′← τ�+ (1− τ)�′

Algorithm 1 NS-RL Algorithm
1: Input: mutation function ψ , mutation rate α, population

size N , number of elites E , archive A, novelty calculate
function η, policy behavior characteristic function BC ,
distance to the target b, number of novelty improve-
ment policies k , experience replay R, random generator
random() ∈ [0, 1).

2: Initialization:Initialize the original population popπ
with N policies, Initialize the policy network πθ , critic
network Q�, actor target network πθ ′ , critic target net-
work Q�′ .

3: for generation = 1, 2, . . . ,G do
4: for π ∈ popπ do
5: trajectory = Evaluate(π).
6: end for
7: Store trajectory inR.
8: bcπ = BC(trajectory).
9: novelty = η(bcπ).

10: Store bcπ in A.
11: Sort the population based on the novelty.
12: Select the top E policies as elites, and add the N−E

policies to S.
13: Select the last k policies and add in U .
14: for π ∈ U do
15: Copy the parameter of π to actor: πθ ← π , π ′θ ←

π .
16: for learning_steps = 1, 2, . . . ,M do
17: Randomly select m mini-batch of samples

(si, ai, si+1) fromR.
18: ri = −D(si+1,BC(πbest))+ b
19: g = BC(πbest).

20: yi =
{
ri + γQ�′ (si+1, πθ ′ (si+1), g), i+ 1 6= T
ri, i+ 1 = T

.

21: Perform gradient descent for � based on the fol-
lowing equation: L = 1

m

∑
(yi − Q�(si, ai, g)2)

22: Perform gradient ascent for θ :

∇θJ =
1
m

∑
Q�(s, a, g)|s=si,a=ai∇θπ (s)|s=si

23: Soft update the target networks: θ ′ ← θ + (1 −
τ)θ ′,�′← �+ (1− τ)�′.

24: end for
25: trajectory = Evaluate(πθθ).
26: bcπθ = BC(trajectory).
27: novelty = η(bcπθ).
28: Store bcπθ in A.
29: if η(πθ) > η(π) then
30: Replace π with πθ .
31: end if
32: end for
33: for π ∈ S do
34: if random() < α then
35: π = ψ(π).
36: end if
37: end for
38: end for

Here τ is a small real number with τ � 1. After the novelty
improved step, mutation are performed on the non-elites

VOLUME 8, 2020 128813

L. Shi et al.: Efficient Novelty Search Through Deep RL

individuals to generate the next generation. The algorithm
terminates when a certain generation of training is reached.

V. EXPERIMENT RESULTS
A. EXPERIMENTAL SETUP
We evaluate our method in 3 locomotion-maze environments
of the well-known RL benchmark environments [17], [29].
The three tasks are to control an ant-like robot to run over
a specific maze with some dynamics. The action space of
each task is 8-dimension with each dimension as a continuous
real number from −30 to +30, while the observation space
is 30 with continuous values. The maximum steps in one
episode of the 3 environments is 500. The details of the three
tasks are described below:

• Ant-Maze: The agent controls an ant-like robot to run
over a ‘‘U’’-shaped maze. The initial position of the
agent is (0, 0) which locates in the lower left of the maze,
while the goal position is (0, 16) which locates in the
upper left of the maze.

• Ant-Push: The agent controls an ant-like robot to run
over the maze. The initial position of the agent is (0, 0)
which locates in the lower right of the maze. The target
goal is (0, 19) which locates in the upper center of the
maze. The red block denotes a movable obstacle. The
agent must first move to the left of the block, push it to
the right and then go up to reach the goal.

• Ant-Fall: The agent controls an ant-like robot to run
over the maze. The initial position of the agent is (0, 0)
which locates in the lower left of the maze. The target
goal is (0, 27) which locates in the upper left of themaze.
There is a chasm in the center of the maze. The agent
must first push the movable block into the chasm and
walk on the top of the block to cross the chasm and reach
the target goal.

The rewards of the 3 tasks are the same: the agent receives
a positive reward after it reaches the goal, else receives a zero.
The rewards for the 3 maze tasks are all sparse. The conven-
tional deep RL methods such as DQN [30] and DDPG [23]
failed to learn those tasks [29]. In order to reach the goal the
agent must get enough information to the maze. All the three
environments are built in the MuJoCo locomotion tasks [31].
We use the OpenAI Gym1 [32] for implementation of the
environments. A 3-layer neural network is adopted to rep-
resent the policy. Each layer has 64 nodes with a ReLU
activation except the output layer is activated by tanh. The
critic network also uses a 3-layer neural network, each layer
has 64 nodes with the hidden layer activated by ReLU. For
the novelty improvement process, we perform 100 steps of
gradient update using the historical samples.

We compare the NS-RL algorithm to 3 baseline methods:

• Novelty search with genetic algorithm (NS-GA): the
original novelty search method in [7]. We use genetic
algorithm for optimization.

1http: gym.openai.com

FIGURE 3. Illustration of the 3 environments used in the experiments.
In each figure, the locomotion is at the start position.

• Novelty search with evolution strategies (NS-ES): this
method was recently proposed in [2], which uses the
evolution strategies to optimize the novelty.

• Novelty search with local competition (NS-LC): this
method was proposed in [8], and uses multi-objective
evolution method NSGA-II [33] to evolve diverge pop-
ulations. As a quality diversity method, NS-LC has been
widely used in novelty search methods [6], [13].

We conduct 3 experiments to evaluate our method.
In novelty improvement evaluation, we evaluate whether
the method proposed in Section IV.A could improve the
novelty using the historical samples generated by novelty
search. In efficiency evaluation, we evaluate the average
episodes and running time to the goal to see the efficiency
of our method comparing to the baseline methods. Finally,
we plot the distribution of the NS-GA and NS-RL to show the
evolving behavior characteristics. The implementation code
of our proposed algorithm is available online.2 The setting of
hyperparameters can also be found in the code.

B. NOVELTY IMPROVEMENT EVALUATION
In this section, we evaluate the proposed strategy to show
whether it can improve the novelty of the policies that have
relatively low novelty in each generation. We run the NS-RL
and NS-GA for 1,000 generations and measure the novelty
of the last k policies before copy into deep RL agent and
the novelty after learned by deep RL agent. Each method
is evaluated for 5 times and we plot the average novelty

2https://github.com/shilx001/NoveltySearch_Improvement

128814 VOLUME 8, 2020

L. Shi et al.: Efficient Novelty Search Through Deep RL

FIGURE 4. Novelty improvement evaluation of the 3 maze tasks.
We evaluate the average novelty of the policies before copy into the deep
RL agent and the average novelty after novelty improvement. The
proposed strategy can eventually improve the novelty for the policies
with lower novelty for the 3 tasks.

in Figure 4. For the 3 maze tasks, the proposed strategy can
eventually improve the novelty for the policies with lower
novelty.

C. EFFICIENCY EVALUATION
In this part, we compare the average episodes and running
time to reach the target goal on the 3 maze environments
among the 4 methods: NS-GA, NS-RL, NS-LC and NS-ES.
The population size of one generation for all the 4 meth-
ods is set to 50. The novelty improvement policies for one
generation of NS-RL is tuned to 10. Specifically, for the
NS-ES method, we use symmetric sampling [34] to improve
the learning stability and efficiency. Therefore, the number of
episodes for one generation of NS-GA, NS-RL, NS-LC and
NS-ES are 50,60,50,100, respectively. We run the 4 methods
for 5 times and use the average value as the result. The exper-
imental environment is: MacOS Catalina, Intel(R) Core(TM)
i5(4th generation) 2.6GHz, 8G RAM, Python 3.5. The result
are shown in Table 1. We also plot the distribution of the
results for each method with botplot, as shown in Figure 5.
In Ant-Maze and Ant-Push, NS-RL outperforms the baseline

TABLE 1. Efficiency evaluation: the upper table shows the average
episode to reach the goal for the 3 tasks. The training generations to
reach the goal are also shown in brackets. The lower table shows the
average running time (seconds) to reach the goal for the 3 tasks.

FIGURE 5. Box plot of the average episodes to reach the target goal of
NS-GA, NA-LC, NS-ES and NS-RL.

methods in both episodes and running time to reach the goal.
However, in Ant-Fall task, NS-ES is better than the other
3 methods. Although our method needs more episodes in one
generation to evaluate the novelty of the policies with RL
improvement, our method can also outperforms the NS-GA
for the 3 maze tasks. Specifically, for NS-RL, the policy
improvement step contributes only 17% of the total running
time of one generation. Therefore, if the hyper-parameter k is
well tuned, the NS-RL could be more efficient than NS-GA.
We will further discuss the experimental results by analyzing
the distribution of policy BCs in the next section.

D. ANALYSIS
We also analyze the distribution of the policy BCs during
the iteration for the 3 tasks. We analyze the median result
of the 5 runs and plot the BCs of the policies for NS-GA,
NS-LC, NS-ES and NS-RL. To show the evolving dynam-
ics of the BCs, we plot 20%, 40%, 60%, 80% and 100%
of the total generation that reach the target goal. Figure 6
and Figure 7 illustrate the distribution of policy BCs in
Ant-Maze and Ant-Fall environment. The result for Ant-Push
can also find in the Appendices. In Ant-Maze environment,
NS-RL is more efficient in exploring the environment than
the 3 methods. Comparing to NS-RL, the new generated
population at each iteration of NS-GA is easy to trap in the
crowd of historical samples, i.e, they are overlapped with
historical BC. Specifically, for the 20% to 60% generation,

VOLUME 8, 2020 128815

L. Shi et al.: Efficient Novelty Search Through Deep RL

FIGURE 6. Distribution of the policy BCs for NS-GA, NS-LC, NS-ES and
NS-RL in Ant-Maze task.

FIGURE 7. Distribution of the policy BCs for NS-GA, NS-LC, NS-ES and
NS-RL in Ant-Fall task.

the new samples generated by NS-GA almost all fell into
the lower part of the maze. In contrast, with the improve-
ment of novelty, our method is able to explore more and
avoid ‘‘overlaps’’ in the BC space than NS-GA. The result
in Ant-Push is similar to Ant-Maze but less notable in obser-
vation. In the Ant-Fall environment, NS-ES outperforms the
other 3 GA-based methods. As there is a chasm in the center
of the maze, if the agent falls into the chasm then it will get
stuck in the chasm. In this task, there are no state transitions
from bottom of the chasm to the upper of themaze. Therefore,
the NS-RL method performs similarly to NS-GA and NS-LC
as the deep learning agent fails to go up of the barrier. We can
see the edge of the chasm is more notable in Figure 7. As a
consequence, our method can improve the efficiency of nov-
elty search if the BC space has no barriers in state transition.

VI. CONCLUSION
In this paper, We proposed a strategy that can improve the
efficiency of novelty search by reducing the overlap of the
new generated samples in each iteration. We then proposed
a framework based on this strategy, which incorporates deep
reinforcement learning with novelty search. An algorithm is
designed based on the framework to solve the tasks with
continuous action spaces. Our experimental results show that
our method can improve the efficiency of novelty search, and
can also provide a competitive result to some of the existing
novelty search methods. The experimental results also show
that if the space of policy behavior characteristics has some
barriers for state transition, then the proposedmethodmay not
work. Another drawback of the proposed method is that our
method is only capable for the novelty search methods with
the behavior characteristic functions are only determined by
its final state of execution. In the future, we will further study
how to improve our method to overcome those problems.

APPENDIX A
BEHAVIOR CHARACTERISTICS OF THE ANT-PUSH TASK
See Figure 8.

FIGURE 8. Distribution of the policy BCs for NS-GA, NS-LC, NS-ES and
NS-RL in Ant-Fall.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 2011.
[2] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. Stanley, and J. Clune,

‘‘Improving exploration in evolution strategies for deep reinforcement
learning via a population of novelty-seeking agents,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 5027–5038.

[3] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan,
J. Schulman, F. DeTurck, and P. Abbeel, ‘‘# Exploration: A study of count-
based exploration for deep reinforcement learning,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 2753–2762.

[4] J. Schmidhuber, ‘‘Formal theory of creativity, fun, and intrinsic motiva-
tion (1990–2010),’’ IEEE Trans. Auto. Mental Develop., vol. 2, no. 3,
pp. 230–247, Sep. 2010.

[5] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel,
‘‘Vime: Variational information maximizing exploration,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 1109–1117.

128816 VOLUME 8, 2020

L. Shi et al.: Efficient Novelty Search Through Deep RL

[6] J. K. Pugh, L. B. Soros, and K. O. Stanley, ‘‘Quality diversity: A new
frontier for evolutionary computation,’’ Frontiers Robot. AI, vol. 3, p. 40,
Jul. 2016.

[7] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune,
‘‘Deep neuroevolution: Genetic algorithms are a competitive alternative
for training deep neural networks for reinforcement learning,’’ 2017,
arXiv:1712.06567. [Online]. Available: http://arxiv.org/abs/1712.06567

[8] J. Lehman and K. O. Stanley, ‘‘Evolving a diversity of virtual creatures
through novelty search and local competition,’’ in Proc. 13th Annu. Conf.
Genetic Evol. Comput. GECCO, 2011, pp. 211–218.

[9] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, ‘‘Robots that can adapt
like animals,’’ Nature, vol. 521, no. 7553, pp. 503–507, May 2015.

[10] J.-B. Mouret and J. Clune, ‘‘Illuminating search spaces by mapping
elites,’’ 2015, arXiv:1504.04909. [Online]. Available: http://arxiv.org/abs/
1504.04909

[11] A. Cully and Y. Demiris, ‘‘Quality and diversity optimization: A uni-
fying modular framework,’’ IEEE Trans. Evol. Comput., vol. 22, no. 2,
pp. 245–259, Apr. 2018.

[12] J. Gomes, P. Mariano, and A. L. Christensen, ‘‘Devising effective novelty
search algorithms: A comprehensive empirical study,’’ in Proc. Genetic
Evol. Comput. Conf. GECCO, 2015, pp. 943–950.

[13] J. Lehman, K. O. Stanley, and R. Miikkulainen, ‘‘Effective diversity main-
tenance in deceptive domains,’’ in Proc. 15th Annu. Conf. Genetic Evol.
Comput. Conf. GECCO, 2013, pp. 215–222.

[14] S. Khadka and K. Tumer, ‘‘Evolution-guided policy gradient in rein-
forcement learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 1188–1200.

[15] R. Velez and J. Clune, ‘‘Novelty search creates robots with general skills
for exploration,’’ in Proc. Conf. Genetic Evol. Comput. GECCO, 2014,
pp. 737–744.

[16] S. Kim, A. Coninx, and S. Doncieux, ‘‘From exploration to control:
Learning object manipulation skills through novelty search and local
adaptation,’’ 2019, arXiv:1901.00811. [Online]. Available: http://arxiv.org/
abs/1901.00811

[17] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, ‘‘Bench-
marking deep reinforcement learning for continuous control,’’ in Proc. Int.
Conf. Mach. Learn., 2016, pp. 1329–1338.

[18] S. Kistemaker and S. Whiteson, ‘‘Critical factors in the performance of
novelty search,’’ inProc. 13th Annu. Conf. Genetic Evol. Comput. GECCO,
2011, pp. 965–972.

[19] K. O. Stanley and R. Miikkulainen, ‘‘Evolving neural networks through
augmenting topologies,’’ Evol. Comput., vol. 10, no. 2, pp. 99–127,
Jun. 2002.

[20] J. Lehman and K. O. Stanley, ‘‘Abandoning objectives: Evolution through
the search for novelty alone,’’ Evol. Comput., vol. 19, no. 2, pp. 189–223,
Jun. 2011.

[21] S. Risi, C. E. Hughes, and K. O. Stanley, ‘‘Evolving plastic neural net-
works with novelty search,’’ Adapt. Behav., vol. 18, no. 6, pp. 470–491,
Dec. 2010.

[22] C. Colas, O. Sigaud, and P.-Y. Oudeyer, ‘‘GEP-PG:Decoupling exploration
and exploitation in deep reinforcement learning algorithms,’’ in Proc. Int.
Conf. Mach. Learn., 2018, pp. 1039–1048.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learn-
ing,’’ 2015, arXiv:1509.02971. [Online]. Available: http://arxiv.org/abs/
1509.02971

[24] N. Maheswaranathan, L. Metz, G. Tucker, D. Choi, and J. Sohl-Dickstein,
‘‘Guided evolutionary strategies: Augmenting random search with sur-
rogate gradients,’’ in Proc. Int. Conf. Mach. Learn., May 2019,
pp. 4264–4273.

[25] A. Pourchot and O. Sigaud, ‘‘CEM-RL: Combining evolutionary and
gradient-based methods for policy search,’’ 2018, arXiv:1810.01222.
[Online]. Available: http://arxiv.org/abs/1810.01222

[26] S. Fujimoto, H. van Hoof, and D. Meger, ‘‘Addressing function approxi-
mation error in actor-critic methods,’’ 2018, arXiv:1802.09477. [Online].
Available: http://arxiv.org/abs/1802.09477

[27] D. Silver, G. Lever, N. Heess, T. Degris, D. Wiestra, and M. Riedmiller,
‘‘Deterministic policy gradient algorithms,’’ in Proc. Int. Conf. Mach.
Learn., May 2014, pp. 387–395.

[28] T. Schaul, D. Horgan, K. Gregor, and D. Silver, ‘‘Universal value function
approximators,’’ in Proc. Int. Conf. Mach. Learn., 2015, pp. 1312–1320.

[29] O. Nachum, S. S. Gu, H. Lee, and S. Levine, ‘‘Data-efficient hierarchical
reinforcement learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 3303–3313.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[31] E. Todorov, T. Erez, and Y. Tassa, ‘‘MuJoCo: A physics engine for model-
based control,’’ inProc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012,
pp. 5026–5033.

[32] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540. [Online].
Available: http://arxiv.org/abs/1606.01540

[33] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[34] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, ‘‘Evolution
strategies as a scalable alternative to reinforcement learning,’’ 2017,
arXiv:1703.03864. [Online]. Available: http://arxiv.org/abs/1703.03864

LONGXIANG SHI received the B.Sc. degree in
software engineering from Northwestern Poly-
technical University, Xi’an, China, in 2012. He is
currently pursuing the Ph.D. degree with the
College of Computer Science and Technology,
Zhejiang University, Hangzhou, China. In 2018,
he was a Joint Ph.D. Student with the Advanced
Analytics Institute, University of Technology
Sydney, Sydney, NSW, Australia, under the super-
vision of Prof. L. Cao. His research interests

include reinforcement learning, data mining, and machine learning.

SHIJIAN LI (Member, IEEE) received the Ph.D.
degree from the College of Computer Science,
Zhejiang University, in 2006. From 2006 to 2008,
he was a Postdoctoral Fellow with the Department
of Control Science and Engineering, Zhejiang
University. In 2010, he was with the Institute
Telecom SudParis, France, as a Visiting Scholar.
He is currently a Full Professor with the College
of Computer Science, Zhejiang University. He has
participated in some national projects, including

the National Basic Research Program of China (973 Program), the National
High Technology Research and Development Program of China (863 Pro-
gram), the National Natural Science Foundation of China, and so on.
He has published over 70 articles on these domains. His research interests
include ubiquitous computing, artificial intelligence, and human–computer
interaction.

QIAN ZHENG received the B.E. and Ph.D.
degrees in computer science from Zhejiang Uni-
versity, China, in 2011 and 2017, respectively.
He visited TheHongKong Polytechnic University,
as a Research Associate, from 2015 to 2016. He is
currently a Research Fellow with the ROSE Labo-
ratory, Nanyang Technological University. He has
published several papers in international journals
and conference, such as the IEEE TRANSACTIONS

ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,
the IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, CVPR, and
ICCV. His current research interests include computational photography and
computer vision. He has served on Program Committee of CVPR 2018 Bio-
metrics Workshop and an Executive Area Chairs Committee (EACC) of
Vision And Learning SEminar (VALSE). He is a Reviewer of the IEEE
TRANSACTIONS ON IMAGE PROCESSING, IEEE ACCESS, CVPR2020, BMVC2019,
and BMVC2020.

VOLUME 8, 2020 128817

L. Shi et al.: Efficient Novelty Search Through Deep RL

MIN YAO received the Ph.D. degree in biomedical
engineering and instrument from Zhejiang Univer-
sity, Hangzhou, China, in 1995. He is currently
a Professor with the College of Computer Sci-
ence and Technology, Zhejiang University. His
research interests include computational intelli-
gence, pattern recognition, knowledge discovery,
and knowledge service.

GANG PAN (Member, IEEE) received the B.S.
and Ph.D. degrees from Zhejiang University,
in 1998 and 2004, respectively. From 2007 to
2008, he waswith the University of California, Los
Angeles, as a Visiting Scholar. He is currently a
Professor with the College of Computer Science
and Technology and the Vice-Director with the
State Key Laboratory of CAD and CG, Zhejiang
University. He has coauthored more than 100 ref-
ereed articles. He holds over 25 patents granted.

His research interests include artificial intelligence, pervasive computing,
brain-machine interfaces, and computer vision. He received many technical
awards, including the IEEE TCSC Award for Excellence, Middle Career
Researcher, in 2018, the CCF-IEEE CS Young Computer Scientist Award,
in 2016, the Top-Ten Achievements in Science and Technology in Chinese
Universities, in 2016, the Best Paper Award of ACM UbiComp, in 2016,
the 2016 BCI Research Award Nomination, and the National Science and
Technology ProgressAward, in 2015. He serves as anAssociate Editor for the
IEEE SYSTEMS JOURNAL, ACM Proceedings of Interactive, Mobile, Wearable
and Ubiquitous Technologies (IMWUT), and Chinese Journal of Electronics.

128818 VOLUME 8, 2020

