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ABSTRACT
Many e-commerce platforms today allow users to give their rating
scores and reviews on items as well as to establish social relation-
ships with other users. As a result, such platforms accumulate het-
erogeneous data including numeric scores, short textual reviews,
and social relationships. However, many recommender systems
only consider historical user feedbacks in modeling user prefer-
ences. More specifically, most existing recommendation approaches
only use rating scores but ignore reviews and social relationships
in the user-generated data. In this paper, we propose TSNPF—a
latent factor model to effectively capture user preferences and item
features. Employing Poisson factorization, TSNPF fully exploits
the wealth of information in rating scores, review text and social
relationships altogether. It extracts topics of items and users from
the review text and makes use of similarities between user pairs
with social relationships, which results in a comprehensive under-
standing of user preferences. Experimental results on real-world
datasets demonstrate that our TSNPF approach is highly effective
at recommending items to users.
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1 INTRODUCTION
Recommender systems are the core of today’s personalized on-
line e-commerce platforms like Amazon and Taobao. Such systems
make use of user activities (e.g., ratings and reviews) and/or so-
cial relationships to generate features of items and identify user
preferences.
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The rating matrix based collaborative filtering [38] makes use
of user activity to identify latent user-item factors to suggest prod-
ucts to a user. A representative realization of latent factor models
is based on Matrix Factorization [27]. However, matrix factoriza-
tion is confronted with a big challenge—computation complexity.
When there are large numbers of users or items, the matrix fac-
torization methods inevitably incur very high cost of latent factor
identification from a huge user-item rating matrix. With the in-
tensive mathematical computation required, such methods cannot
handle large datasets. Some variants, e.g., Probabilistic Matrix Fac-
torization [37], attempt to solve this problem. However, like most
collaborative filtering methods, such variants often fail to identify
the latent factors when a user or an item is associated with too few
ratings. Consequently, the computation for recommendation falls
apart due to data sparsity—too many zero ratings in a rating matrix.
In contrast, the Hierarchical Poisson Factorization (HPF) [6, 15]
only utilizes non-zero ratings to make scalable recommendations
on large and sparse data.

In addition to user ratings on items, modern e-commerce plat-
forms also generate other kinds of useful data such as social re-
lationships and user reviews. By combining a rating matrix with
additional data, better recommendations are expected. On the one
hand, user textual reviews contain large amounts of information
that often reflect concrete consumer experiences and many item
attributes related to product quality. Some studies have utilized re-
view text information for recommendation. By integrating ratings
with review text or item contents, works [2, 9, 14, 28, 43] com-
bine factors in ratings with topics in item reviews. On the other
hand, the abundant social relationships provide an independent
data source for recommendation and another possibility to improve
recommended result quality. E.g., existing works [16, 31, 41] fac-
torize rating matrix and social matrix simultaneously to improve
recommendation performance.

In general, methods utilizing heterogeneous data tend to perform
better than those using a single data source [45]. However, few
studies take a rating matrix, social relationships and review text
altogether into consideration. Work [20] is such an effort. However,
it is simply a linear combination of two methods [2, 41]; it does not
leverage the comprehensive implications of the latent factors in the
completeness of a rating matrix, review text and social relationships.

In this paper, we propose an approach called Topic Soical Net-
work Poisson Factorization (TSNPF for short). It integrates a rating
matrix, review text and social relationships altogether in order
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to enable high-quality recommendations. Overall, TSNPF aims to
find item attributes and user preferences by exploiting all available
heterogeneous data. Specifically, TSNPF merges all reviews on an
item/user to generate the document for this item/user, in the hope of
extracting topic intensities from such documents. When the topics
of an item and a user are similar, the rating score of the user on that
item tends to be high. However, item attributes and user preferences
are not fully parameterized by their documents. To this end, we
associate an attribute annex to each item and a preference annex
to each user. As a result, the summation of topic intensities and
corresponding annexes capture item attributes and user preferences
to a greater extent. Rating of a user on an item is generated from
the user’s preferences and the item’s attributes. In addition, most
existing recommender systems that use social information assume
that friends have similar preferences, which is however unrealistic
in real life. In contrast, we utilize social relationships in a different
way. Specifically, by assuming the similarity between two friends
are generated from both users’ preferences, we model the similarity
with respect to the items they both have rated. The intuition behind
is that a pair of friends who share similar (different) ratings on the
same items naturally tend to have similar (different) preferences.

Our TSNPF exploits observations of multiple kinds, namely the
ratings, the frequencies of words in the documents of items and
users, and the similarity between a pair of friends on the items
which they have both rated. In our model, each observation is
represented as non-negative integers and generated from a Poisson
distribution [25] that is in exponential family over non-negative
integers. The latent item/user topic intensity, the item attribute
annex and the user preference annex are all sampled from Gamma
distributions—another exponential family distribution with shape
and rate parameters. TSNPF only scans non-zero ratings, word
frequencies and similarities, and factorizes them based on their
posterior Gamma distributions. Therefore, TSNPF is able to capture
features from sparse observations. By augmenting TSNPF with
some auxiliary variables, we make TSNPF conditionally conjugate
such that we can apply particular techniques to infer the parameters
for it. To fit our TSNPF model, we use variational inference. It is an
optimization-based strategy for efficiently approximating posterior
distributions in large-scale complex probabilistic models [26, 42].
We propose a simple mean-field [36] variational inference method
to update the parameters of TSNPF.

Our contributions are summarized as follows:

• We propose a method based on Gamma-Poisson distribution
to extract the topic intensities of items and users from user-
generated textual reviews. Compared to previous techniques,
our method is able to address the usual problem of data
scarcity.
• We propose TSNPF, a conjugate graphical model based on
Poisson factorization which only models non-zero observa-
tions in ratings, reviews and social relations simultaneously
via interpretable user preferences and item attributes. In
addition, we propose a closed form mean-field variational
inference method to train TSNPF.
• We evaluate the performance of TSNPF using three publicly
available real datasets. The results show that TSNPF outper-
forms state-of-the-art alternatives.

The rest of this paper is organized as follows. Section 2 reviews
the related work. Section 3 formulates the research problem and
introduces the notations used throughout this paper. Section 4
describes our TSNPF model. Sections 5 details the variational in-
ference for our TSNPF model. Experimental results are shown in
Section 6. Section 7 concludes the paper and points out future work
directions.

2 RELETEDWORK
In this section, we mainly discuss the works which utilize hetero-
geneous data for recommendations.

Many existing works attempt to extract topics and features from
user-generated reviews and learn latent factors from ratings using
matrix factorization (MF) methods [10, 11, 18, 33, 40, 47, 52]. A
general idea of thesemethods is to extract latent topics from reviews
using topic models [10, 28, 33, 40, 47]. In particular, RMR [28] uses
topic models on reviews to learns items’ features and models rating
using a maxiture of Gaussian. RBLT [40] and ITLFM [47] linearly
combine the latent topics and latent factors to form the latent
representations for users and items. TopicMF [2] and HPF [33]
define a transform action function to link the latent topics and latent
factors. He et al. [18] model the user-item-aspect relation with a
tripartite graph to extract latent topics from reviews. JMARS [11]
is an integrated graphical model that makes use of ratings and
sentiments together for movie recommendation. However, with
the rapid growth of user numbers, the increasing sparsity of the
data becomes a critical concern [30]. Recently, neural networks are
widely used to process reviews in recommender systems [7, 48, 49,
52]. DeepCoNN [52] first uses two CNNs to process reviews to learn
users’ and items’ representations which are in turn concatenated
and passed into a regression layer for rating predictions. However,
neural network based methods often have the efficiency problem
and their performance decrease greatly when reviews are scarce or
unavailable in the testing phase [7].

There are also works [34, 35, 50] analyzing users’ sentiments in
reviews to improve the quality of recommendations. These works
usually rely on the external NLP tools for sentiment analysis and
thus are not self-contained.

Besides, item descriptions are also useful data for recommen-
dations. Personalized articles recommendation methods such as
CTR [43] and CTPF [14] assume that latent factors of items depend
on the latent topic distributions from article contents. CTR [43]
combines topic modeling using LDA [5] with Gaussian matrix fac-
torization for one-class collaborative filtering [21]. CTPF [14] mod-
els both reader behavior and article texts with Poisson distributions,
connecting the latent topics that represent the texts with the la-
tent preferences that represent the readers. However, CTR is not
conditionally conjugate and its inference algorithm depends on
numerical optimization of topic intensities. Also, CTR and CTPF
demand that the items themselves are articles or associated with
descriptions. Thus, it is difficult to apply them in other scenarios.

In addition to textual data, social relations is another kind of
heterogeneous data often used in recommender systems. LOCA-
BAL [41] takes advantage of both local and global social contexts
for recommendation. Ma et al. [31] propose a factor analysis ap-
proach based on probabilistic matrix factorization called “SoRec”. It
addresses the data sparsity and poor prediction accuracy problems

996



by employing both users’ social network information and rating
records. This idea is also applied in other works [24, 32]. Trust-
based approach is another way to utilize social relations to make
recommendation [23, 51]. This approach assumes a trust network
among users and makes recommendations based on the ratings of
the users that are directly or indirectly trusted by a user. Combin-
ing TopicMF [2] and LOCABAL [41], synthetic approach MR3 [20]
utilizes ratings, social relations and reviews together for recom-
mendation. However, MR3 is essentially a linear combination and
it performs worse than our proposed approach according to our
experimental results.

Moreover, Zhang et. al [46] andHe et al. [17] consider the effect of
visual content such as images when making recommendations. Bao
et. al [1] and Do et. al [12] integrate metadata into their approaches.

3 NOTATIONS AND PROBLEM
FORMULATION

Traditional recommender systems usually only use the rating ma-
trix and ignore review text and social relationships. However, it is
beneficial to take both of these two aspects into consideration [20].
On the one hand, social relationships often have impacts on a user’s
impression of items. On the other hand, a rating score can tell if a
user likes or dislikes an item, but it cannot tell the reason behind
the preference. In contrast, if this rating score is associated with
some review text, the chance is better for us to understand why the
user likes or dislikes the item. In addition, reviews offer abundant
information about items’ attributes. We intend to exploit the full
combination of the rating matrix, the review text and the social
relationships. We fuse three heterogeneous data types in one com-
prehensive data model to make high quality recommendations. The
main notations used throughout the paper are shown in Table 1.

Table 1: Notations

Rui User u’s rating on item i

DI
i Document of item i

DU
u Document of user u

C I
iw Count of wordw in DI

i
CUuw Count of wordw in DU

u
Suvi Rating similarity between users u and v on item i

εw latent topic rate for wordw
ϵw Latent topic intensities for wordw
ϖi latent topic rate for item i

πi Latent topic intensities for item i

αi latent popularity for item i

βi Latent attribute annex for item i

ςu Latent topic rate for user u
σu Latent topic intensities for user u
ϑu Latent activity for user u
θu Latent preference annex for user u

Suppose there are U users numbered from 1 to U and I items
numbered from 1 to I . The matrix of ratings given by users to items
is denoted by R ∈ RU×I , where Rui is the rating by user u on
item i . Each Rui is an integer satisfying 0 ≤ Rui ≤ M , where M
is the maximum rating score and 0 means currently the rating is
unavailable. In addition to the rating matrix, the observed review

on item i written by user u is denoted as Dui , which is along with
a rating score Rui . For every item i , we merge all users’ review
comments together, generating a document DI

i , i.e., D
I
i =
⋃
u Dui .

Likewise, DU
u denotes the document of a user u, i.e., DU

u =
⋃
i Dui .

We use DI and DU to denote the set of all documents of items and
users, respectively. Furthermore, we use G ∈ RU×U to denote the
user social network whereGuv = 1 means usersu andv are friends
and Guv = 0 otherwise. Typically, R, DI , DU and G are all highly
sparse, i.e., having many zero values.

For the recommendation purpose, we need to judge if a user will
like an item that he/she has never consumed before. The problem
statement for our research is as follows:

Problem Formulation: Given the rating matrix R, the docu-
ment sets of items and users, i.e.,DI andDU , and the social network
G, estimate user u’s rating on item i , i.e., Rui that currently is 0.

4 TOPIC SOCIAL NETWORK POISSON
FACTORIZATION

In this section, we describe the topic social network poisson fac-
torization model (TSNPF). We model each user and each item by
exploiting the rating matrix R, the documents sets DI and DU , and
the social network G comprehensively.

Extracting topic intensities fromdocuments. In TSNPF, there
is a collection ofK topics ϵ1:V ,1:K where each topic ϵ:,k is composed
of a vector of word intensities on the vocabulary and V is the size
of the vocabulary. An item i is partly parameterized by the in-
tensities of these topics denoted by πi,1:K . The document DI

i is
generated by ϵ1:V and πi withC I

iw , whereC I
iw is the count of word

w in Di and it is modeled by the inner product of ϵw and πi , i.e.,
C I
iw ∼ Poisson(π⊤i ϵw ). Suppose σu,1:K models the topics of user

u, and CUuw is the word count ofw in the document DU
u . Likewise,

CUuw is modeled using Poisson(σ⊤u ϵw ). When topic intensities of
an item and a user are similar, the corresponding rating tends to
be high. Using word intensities as topics is an widely-used tech-
nique [5]. Compared to existing work, our method of extracting
topics is built on Poisson factorization which can take advantage of
natural sparsity of user/item documents and is more efficient than
Gaussian factorization based approaches [14].

Modeling ratings. The documents of items or users can not
fully parameterize the items or users [14]. To this end, we make
TSNPFassociate K latent attribute annexes βi,1:K to each item i and
K latent preference annexes σu,1:K to each user u. Such annexes
capture the items’ and users’ deviations from their topic intensities.
The ratingRui is modeled by the inner product of the item attributes
and user preferences, i.e., Rui ∼ Poisson

(
(σu + θu )

⊤ (πi + βi )
)
.

Modeling similarities. In addition, it is reasonable to believe
that a user u’s ratings on items are influenced by u’s friends. When
a pair of friends u and v have similar preferences, they are likely
to give similar ratings on items. To incorporate this, we define the
similarity between u and v on each item i on which they both give
ratings, i.e., Suvi =M − |Rui −Rvi | whereM is the maximum rating
score. In TSNPF, we model Suvi using the inner product of users u
and v’s preferences, i.e., Suv,i ∼ Poisson

(
(σu + θu )

⊤ (σv + θv )
)
. In

this way, the distance of a pair of friends’ preference vectors tends
to be small when the users have similar ratings.
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Figure 1: The directed graphical model representing TSNPF.

To deal with the sparsity of users and items, TSNPF also pre-
serves the heterogeneity in the features by placing Gamma priors
on ϵw , πi , σu , βi and θu [15]. The graphical model of TSNPF is illus-
trated in Figure 1. To avoid ambiguity, we only draw one constant
node (д′,h′) in the example. More specifically, TSNPF’s generative
process is described as follows:

1. Generating documents of items and users
1). For each wordw :

(a) Sample latent topic rate εw ∼ Gamma(a′,b ′).
(b) Sample word topic intensities ϵwk ∼ Gamma(a, εw ).

2). For each item i:
(a) Sample topic rate ϖi ∼ Gamma(c ′,d ′).
(b) Sample document topic intensities πik ∼ Gamma(c,ϖi ).
(c) For every wordw in DI

i , sample word count

C I
iw ∼ Poisson(π⊤i ϵw ).

3). For each user u:
(a) Sample topic rate ςu ∼ Gamma(e ′, f ′).
(b) Sample document topic intensitiesσuk ∼ Gamma(e, ςu ).
(c) For every wordw in DU

u , sample word count

CUuw ∼ Poisson(σ⊤u ϵw ).

2. Generating ratings
1). For each item i:

(a) Sample latent popularity αi ∼ Gamma(д′,h′).
(b) Sample attribute annex for each component k :

βik ∼ Gamma(д,αi ).

2). For each user u:
(a) Sample latent activity ϑu ∼ Gamma(m′,n′).
(b) Sample preference annex for each component k :

θuk ∼ Gamma(m,ϑu )

3). For each user u and item i , sample rating

Rui ∼ Poisson
(
(σu + θu )

⊤ (πi + βi )
)
.

3. Generating rating similarities between friends
For a pair of users u and v with Guv = 1, for every item they

both have rated, sample rating similarity:

Suvi ∼ Poisson
(
(σu + θu )

⊤ (σv + θv )
)
.

Given the observed rating matrix R, users similarity set S and
word count setsC I andCU generated by document setsDI andDU ,
respectively, our goal is to infer the topics ϵw,1:K , the item and user
topic intensities πi,1;K and σu,1;K , the item attribute annex βi,1:K ,
the user preference annex θu,1:K and their priors, i.e., to estimate
the posterior distribution p (ϵ, ε,π ,ϖ,σ , ς , β ,α ,θ ,ϑ , |R, S,C I ,CU )
of these variables. Once the posterior is fit, TSNPF can be used to
recommend items to users by ranking users’ unconsumed items
according to their scores based on the posterior expected Poisson
parameters. Such a score for user u and item i is defined as follow:

score(u, i ) = E[(σu + θu )⊤ (πi + βi ) |R, S,C I ,CU ]

5 INFERENCE FOR TSNPF
It is intractable to compute the exact posterior distributionp (ϵ, ε,π ,ϖ,
σ , ς , β ,α ,θ ,ϑ |R, S,C I ,CU ) of TSNPF directly as variables are de-
pendent on each other in p. We use variational inference [26] to
approximate it. A family of distributions over latent variables in-
dexed by a set of free parameters is introduced in variational infer-
ence. Those parameters are optimized to find the member of the
family that is closest to the posterior. Previous studies [39, 44] have
proved that the combination of simple distributions (e.g., Poisson
and Gaussian distribution) is able to approximate a very complex
distribution. Thus, variational inference is reasonable. We use a
distribution q(ϵ, ε,π ,ϖ,σ , ς , β,α ,θ ,ϑ ) in mean-field family [36],
the simplest variational family, to approximate the exact posterior
distribution p.

5.1 Complete Conditionals for TSNPF
We first augment TSNPF with auxiliary variables to make it con-
ditionally conjugate, which means the complete conditional of
each latent variable in p is in the exponential family and is in
the same family as its prior [13]. A complete conditional is the
conditional distribution of a latent variable given the observa-
tions and other latent variables. Following previous work [15],
for word counts C I

iw and CUuw , we add K latent variables x Iiw,k ∼

Poisson(ϵwkπik ) and K latent variables xUiw,k ∼ Poisson(ϵwkσuk ),
respectively, where C I

iw =
∑
k x

I
iw,k and CUuw =

∑
k x

U
uw,k . For

rating similarity Suvi that is non-zero, we add 2K latent vari-
ables zuvi,k which include two parts: zσuvi,k and zθuvi,k such that
zσuvi,k ∼ Poisson(σukσvk ) and zθuvi,k ∼ Poisson(θukθvk ), where
Suvi =

∑
k (z

σ
uvi,k + z

θ
uvi,k ) for every item i . For rating Rui , 4K la-

tent variables y1ui,k ∼ Poisson(πikσuk ), y2ui,k ∼ Poisson(πikθuk ),
y3ui,k ∼ Poisson(βikσuk ) and y4ui,k ∼ Poisson(βikθuk ) are intro-
duced such that Rui =

∑
k (y

1
ui,k +y

2
ui,k +y

3
ui,k +y

4
ui,k ). As a sum

of independent Poisson random variables is itself a Poisson random
variable with rate equal to the sum of the rates, the new latent vari-
ables preserve the marginal distribution of the observations. With
the additional auxiliary variables, TSNPF is conditionally conjugate.
We define the mean-field family that considers the latent variables
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Table 2: TSNPF: latent variables, complete conditionals and variational parameters

Variable Type Complete Conditional Variational Params
εw Gamma a′ + Ka, b ′ +

∑
k ϵwk ι

shp
w ,ιr tew

ϵwk Gamma a +
∑
i x

I
iw,k +

∑
u x

U
uw,k , εw +

∑
i πik +

∑
u σuk µ

shp
wk , µr tewk

ϖi Gamma c ′ + Kc , d ′ +
∑
k πik ζ

shp
i , ζ r tei

πik Gamma c +
∑
w x Iiw,k +

∑
u (y

1
ui,k + y

2
ui,k ), ϖi +

∑
w ϵwk +

∑
u (σuk + θuk ) ρ

shp
ik , ρr teik

αi Gamma д′ + Kc , h′ +
∑
k βik τ

shp
i , τ r tei

βik Gamma д +
∑
u (y

3
ui,k + y

4
ui,k ), αi +

∑
u (σuk + θuk ) λ

shp
ik , λr teik

ςu Gamma e ′ + Ke , f ′ +
∑
k σuk ξ

shp
u , ξ r teu

σuk Gamma e +
∑
w xUiw,k +

∑
i (y

1
ui,k + y

3
ui,k ) +

∑
v,i,Suvi,0

zσuvi,k , ν
shp
uk ,ν

r te
uk

ςu +
∑
w ϵwk +

∑
i (πik + βik ) +

∑
v,i,Suvi,0

σv,k

ϑu Gamma m′ + Km, n′ +
∑
k θuk κ

shp
u , κr teu

θuk Gamma m +
∑
i
(y2ui,k + y

4
ui,k ) +

∑
v,i,Suvi,0

zθuv,k , ϑu +
∑
i
(πik + βik ) +

∑
v,i,Suvi,0

θvk γ
shp
uk , γ r teuk

x Iiw Mult logπik + log ϵwk χ Iiw
xUuw Mult logσuk + log ϵwk χUiw

zuvi Mult



logσuk + logσvk , case zσuvi
logθuk + logθvk , case zθuvi

φσuv ,φ
θ
uv

yui Mult




logπik + logσuk , case y1ui
logπik + logθuk , case y2ui
log βik + logσuk , case y3ui
log βik + logθuk , case y4ui

ϕ1ui ,ϕ
2
ui ,ϕ

3
ui ,ϕ

4
ui

to be independent and each governed by its own distributions.

q(ε, ϵ,ϖ,π ,α , β , ς ,σ ,ϑ ,θ ,x I ,xU , zσ , zθ ,y) =
∏
w,k

q(ϵwk |µwk )∏
w

q(εw |ιw )
∏
i,k

q(πik |ρik )q(βik |λik )
∏
i
q(ϖi |ζi )q(αi |τi )∏

u,k

q(σuk |νuk )q(ςu |ξu )q(θuk |γuk )
∏
u

q(ϑu |κu )∏
i,w

q(x Iiw |χ
I
iw )
∏
u,w

q(xUuw |χ
U
iw )
∏
u,v,i

q(zσuvi , z
θ
uvi |φ

σ
uv ,φ

θ
uv )∏

u,i
q(y1ui ,y

2
ui ,y

3
ui ,y

4
ui |ϕ

1
ui ,ϕ

2
ui ,ϕ

3
ui ,ϕ

4
ui ) (1)

The distributions of the variational variables (εw , ϵwk , ϖi , πik ,
αi , βik , ςu , σuk , ϑu and θuk ) and the auxiliary variables (x I , xU , z
and y) are all the same as their conditional distributions in p. The
complete conditionals of all variables and the variational parameters
that govern these variables in q are shown in Table 2. For more
detailed derivation, please refer to Appendix A.1

The complete conditionals of εw , ϵwk , ϖi , πik , αi , βik , ςu , σuk ,
ϑu and θuk are all Gamma distributions, which are in the expo-
nential family, with shape and rate variational parameters. We
denote shape with superscript ‘shp’ and rate with ‘rte’. For ex-
ample, the variational distribution for the user preference θuk is
Gamma(γ shpuk ,γ

r te
uk ). For auxiliary variables x Iiw , xUuw , zuvi andyui ,

the complete conditionals are all free multinomials [25]. Specifically,
χ Iiw and χUuw are all K-vectors that sum to one; φuv = (φσuv ,φ

θ
uv )

and ϕui = (ϕ1ui ,ϕ
2
ui ,ϕ

3
ui ,ϕ

4
ui ) are points in the 2K and 4K-simplex,

respectively.

5.2 Closed Form Variational Parameters
Update

In this section, we give an coordinate ascent algorithm [4, 19] to
update every variational parameter by holding all other parameters
fixed. The detailed derivation can be found in Appendix A.2.

For all words and items, we initialize theword topic intensities ϵw
using LDA [5]. These operations can be implemented by setting the
point-wise ratio µshpw /µr tew to be ϵw . Subsequently, for all users and
items, we initialize the user activity rate κr teu , user preference γu ,
item popularity rate τ r tei and item feature λi with a small positive
noise. We initialize the item topic intensities and attribute annexes
i.e., ζ shpi and τ

shp
i , and the user topic intensities and preference

annexes shapes, i.e., ξ shpu and κ
shp
u , according to the following

equations:

ζ
shp
i = c ′ + Kc; τ shpi = д′ + Kд

ξ
shp
u = e ′ + Ke; κshpu =m′ + Km

Furthermore, the following steps are repeated until convergence:
1. Let

f (r , s ) = exp
(
Ψ(r shp ) − log r r te + Ψ(sshp ) − log sr te

)
WeuseΨ(·) to denote the digamma function. For eachword/item
such that C I

iw > 0, each word/user such that CUuw > 0,
each user pairs such that Suvi > 0 for some items and each
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user/item such that Rui > 0, update the multinomials:

χ̂ Iiw,k = f (ρik , µwk ) ; χ Iiw,k =
χ̂ Iiw,k∑
k χ̂ Iiw,k

χ̂Uuw,k = f (σuk , µwk ) ; χUuw,k =
χ̂Uuw,k∑
k ( χ̂

U
iw,k )

φ̂σuv,k = f (νuk ,νvk ) ; φ̂θuv,k = f (γuk ,γvk )

φσuv,k =
φ̂σuv,k∑

k (φ̂
σ
uv,k + φ̂

θ
uv,k )

; φθuv,k =
φ̂θuv,k∑

k (φ̂
σ
uv,k + φ̂

θ
uv,k )

ϕ̂1ui,k = f (ρik ,νuk ) ; ϕ̂2ui,k = f (ρik ,γuk )

ϕ̂3ui,k = f (λik ,νuk ) ; ϕ̂4ui,k = f (λik ,γuk )

ϕ
j
ui,k =

ϕ̂
j
ui,k∑

k (ϕ̂
1
ui,k + ϕ̂

2
ui,k + ϕ̂

3
ui,k + ϕ̂

4
ui,k )

, j = 1, 2, 3, 4

2. For each item, update the topic prior and intensities, attribute
prior and annex parameters:

ρ
shp
ik = c +

∑
w

C I
iw χ Iiw,k +

∑
u

Rui (ϕ
1
ui,k + ϕ

2
ui,k )

ρr teik =
ζ
shp
i
ζ r tei

+
∑
w

µ
shp
wk
µr tewk

+
∑
u
(
ν
shp
uk
νr teuk

+
γ
shp
uk
γ r teuk

)

λ
shp
ik = д +

∑
u

Rui (ϕ
3
ui,k + ϕ

4
ui,k )

λr teik =
τ
shp
i
τ r tei

+
∑
u
(
ν
shp
uk
νr teuk

+
γ
shp
uk
γ r teuk

)

ζ r tei = d ′ +
∑
k

ρ
shp
ik
ρr teik

; τ r tei = h′ +
∑
k

λ
shp
ik
λr teik

3. For each user, update the topic prior and intensities, prefer-
ence prior and annex parameters:

ν
shp
uk = e +

∑
w

CUuw χUuw,k +
∑
i
Rui (ϕ

1
ui,k + ϕ

3
ui,k )

+
∑

v,i,Suvi,0
Suviφ

σ
uv,k

νr teuk =
ξ
shp
u
ξ r teu

+
∑
w

µ
shp
wk
µr tewk

+
∑
i
(
ρ
shp
ik
ρr teik

+
λ
shp
ik
λr teik

) +
∑

v,i,Suvi,0

ν
shp
vk
νr tevk

γ
shp
uk =m +

∑
i
Rui (ϕ

2
ui,k + ϕ

4
ui,k ) +

∑
v,i,Suvi,0

Suviφ
θ
uv,k

γ r teuk =
κ
shp
u
κr teu

+
∑
i
(
ρ
shp
ik
ρr teik

+
λ
shp
ik
λr teik

) +
∑

v,i,Suvi,0

γ
shp
vk
γ r tevk

ξ r teu = f ′ +
∑
k

ν
shp
uk

ν
shp
uk

; κr teu = n′ +
∑
k

γ
shp
uk

γ
shp
uk

4. For each word, update the word topic parameters:

µ
shp
wk = a +

∑
i
C I
iw χ Iiw,k +

∑
u

CUuw χUuw,k

µr tewk =
ι
shp
w
ιr tew
+
∑
i

ρ
shp
ik

ρ
shp
ik

+
∑
u

ν
shp
uk

ν
shp
uk

; ιr tew = b ′ +
∑
k

µ
shp
wk

µ
shp
wk

Specifically, this algorithm only needs the non-zero observations
in R, S , C I and CU . In step 1 above, we only need to update the
variational parameters of the multinomials χiw , φuv and ϕui for
the non-zero word count, user similarity and rating observations,
respectively. In steps 2, 3 and 4, all of the sums also only consider
the non-zero observations. To judge if the distribution converges,
we calculate the log probability of generating a validation rating
matrix R̃ at every iteration:

logp (R̃ |θ, π , β, σ , θ ) =
∑

u,i, R̃ui,0

logp (R̃ui |θu, πi , βi , σu, θu )

=
∑

u,i, R̃ui,0

(
R̃ui log

(
(σu + θu )⊤ (πi + βi )

)
− log R̃ui !

)
− (
∑
u

σu + θu )⊤ (
∑
i
πi + βi )

When the change in the log probability is less than a very small
threshold, we decide that the distribution converges and terminate
the algorithm. The equation above implies that non-zero obser-
vations are not necessary when calculating the log probability.
Therefore, this algorithm is able to handle sparse data.

6 EXPERIMENTS
In this section, we report on experimental studies that compare
our TSNPFwith existing methods and investigate the factors having
impacts on the performance of TSNPF. In Section 6.1, we describe
the settings of our experiments. Section 6.2 details the comparison
results between our TSNPF and alternative methods. Section 6.3
reports on the impacts of reviews and social relations on the perfor-
mance of TSNPF. Finally, Section 6.4 investigates how TSNPF per-
forms as user activeness varies.

6.1 Experimental Settings
Datasets.We use the following open real datasets that are popular
and used in the experiments of many recent works [20, 29, 33]:
• PH-Restaurants includes 204,887 users, 17,213 restaurants
and 728,948 friend pairs. There are on average 1,180 words
in the document of each restaurant. It is a part of the dataset
of full Yelp data challenge1 related to Phoenix.
• LV-Restaurants is also from Yelp data challenge. It con-
tains 506,278 users, 26,809 restaurants located in Las Vegas
and 3,109,068 friend pairs. The average word count of every
document is 2,231.
• Ciao 2 is a dataset from a knowledge sharing and review
website, on which users can rate items, give reviews and
connect to others. This dataset includes 9,100 users, 23,432
items and 223,522 friend pairs. Each document contains 1,959
words on average.

1https://www.yelp.com/dataset/challenge
2https://www.cse.msu.edu/~tangjili/trust.html
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The actual ratings on these datasets are all integers ranging from 1
to 5. For every dataset, we only keep top 20,000 words that appear
most frequently .
Competing approaches.We compare our TSNPF with the follow-
ing three typical approaches. They are the most recent representa-
tive approaches related to our TSNPF:
• HPF [15] factorizes the rating matrix based on Gamma-
Poisson distribution. It is the first model in recommender
systems that uses Poisson factorization.
• CuPF [12] is short for Coupled User Poisson Factorization
that learns the couplings between users in the process of
Poisson factorization. It is an improvement of HPF.
• MR3 [20] is a synthetic approach combining ratings, social
relationships and reviews. It integrates two other previous
works [2, 41].

Evaluation Metrics.We randomly select 20% of the ratings with
reviews in each dataset as testing set. Additionally, we set aside 1%
of the training ratings and reviews as a validation set which is used
to determine the algorithms convergence and to tune variational
parameters. We define the relevant and recommended items for user
u as those items on which the actual and predicted ratings by u are
larger than 3.5, respectively. The following three metrics are used
to evaluate the performance of the approaches in our experiments:
• Normalized Mean Recall (NMR) is a variant of recall-at-
N which adjusts the denominator N ′u for a user u to be the
min(N , Iu ) where Iu denotes the most number of items the
user u has rated in testing set. It is defined as

NMR =
∑
u # of recommended and relevant items@N ′u∑

u # of relevant items@N ′u

• NormalizedMeanPrecision (NMP) is a variant of precision-
at-N with the denominator defined in normalized mean re-
call. Likewise,

NMP =
∑
u # of recommended and relevant items@N ′u∑

u # of recommended items@N ′u

• Root-Mean-Square Error (RMSE) is defined as

RMSE =
√∑

u,i
(Rui − R̂ui )2/T

Above, R̂ui is the predicted rating of user u on item i and T
is the number of ratings in testing set.

Parameter settings In our settings, the number of latent variables
K is set to 100. The parameters a′, b ′, a, c ′, d ′, c , e ′, f ′, e , д′, h′, д,
m′, n′ andm in Section 4 are all set to 0.3 [15].

6.2 Overall Results and Analysis
We run top-20 recommendations using all the four approaches
on all of the three datasets. Figure 2 reports the average results
of the NMR, NMP and RMSE achieved by the four approaches.
Overall, TSNPF outperforms the others on all three datasets. First,
our TSNPF achieves considerably higher NMR than others, espe-
cially HPF and CuPF. This indicates that, compared to the items
recommended by other approaches, a much higher fraction of all
relevant items are indeed recommended by TSNPF to the respective
users. Next, the NMP is high for all approaches and that of TSNPF is

the highest. This indicates that all approaches are capable of re-
turning high ratios of relevant items in their recommendations to
users and TSNPF is overall the most effective one. Furthermore, the
RMSE of TSNPF is also the best (smallest). Compared with HPF and
CuPF, TSNPF gains clear RMSE improvements on all of the three
datasets. MR3 outperforms HPF and CuPF, but is slightly better
than TSNPF only in terms of NMP and RMSE on the Ciao dataset.

As recommender systems are more concerned about recommend-
ing more relevant items, i.e., achieving higher NMR, TSNPF per-
forms best among all the four approaches in comparison. These
experimental results demonstrate that TSNPF yields higher-quality
recommendations.

Both HPF and CuPF use rating matrix only. More concretely, HPF
only utilizes the ratings by individual users on items to generate
user preferences and item attributes. CuPF attemps to capture the
coupling relations between users and rating popularity. To predict
the rating of user u on item i , CuPF requires that at least another
user v and another item j exist in the training rating matrix such
that both items i and j have been rated by user v . This is very de-
manding. According to our statistics, more than half of the testing
ratings cannot be predicted by CuPF in all of the three datasets 3.
This indicates that CuPF is unsuitable for sparse data. Although
MR3 utilizes all three types of data, it is simply a linear combina-
tion of two existing methods without sophisticated designs. The
performance gain of TSNPF implies that jointly modeling the three
types of data results in clearly better item recommendations.

6.3 Effects of Reviews and Social Relationships
Note that it is unnecessary for TSNPF that every rating is associated
with a review, since we model the topic intensities of users/items
based on all reviews related with users/items. Even if no review of
a user/item is available, TSNPF is still able to process the relevant
data. In case reviews are missing, there is no process of generating
topic intensities. As a result, for an item, the ratings on it dominates
its attributes. A user’s preference is dominated by the ratings he/she
post and his/her friends’ preferences. To investigate the effect of
each data type on TSNPF, we eliminate either reviews or social
relationships, or both of them from TSNPF:
• TSNPF\R eliminates the effect of reviews by removing step
1 in the generative process (Section 4).
• TSNPF\S eliminates the effect of social relationships by
removing step 3 in the generative process (Section 4).
• TSNPF\R\S eliminates the effect of both reviews and social
relationships by removing steps 1 and 3 in the generative
process (Section 4). As a result, it becomes HPF.

The recommendation results of TSNPF and its three variants are
shown in Figure 3. TSNPF\R and TSNPF\S performs better than
TSNPF\R\S on all three datasets, which suggests that both reviews
and social relationships contain useful information for item recom-
mendations. However, compared with TSNPF, the performance of
a variant degrades when either reviews or social relationships are
eliminated. The overall results indicate that TSNPF can make very
good use of the heterogeneous information in reviews and social
relationships.

3For testing data, we randomly decide the ratings from 1 to M .
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Figure 2: Performance of four approaches on three datasets
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Figure 3: Effects of reviews and social relationships
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Figure 4: Effect of user rating activeness
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Figure 5: Effect of user social activeness

6.4 The Sensitivity of User Activeness
We treat NMR, NMP and RMSE as a function of user activeness and
investigate how the recommendation performance varies across
users of different types. We split all users in each of the three
datasets into 10 groups ranked by user activeness. The first group
is the bottom 10% users who are the least active, i.e., having rated
fewest items. The 10th group contains the top 10% most active
users. Figure 4 shows the performance results of NMR and NMP
at top-20 recommendations and RMSE with different user types
on the PH-Restaurants dataset. Due to the page limit, we omit
the similar results on other datasets. The results show that all
approaches tend to perform better on more active users as such
users generate more data that can be used in the models. Again, we
see that TSNPF outperforms the others in all but a few cases. This
implies that TSNPF exploits larger amounts of user-generated data
more effectively.

We also study the effect of the number of users’ friends. Similarly,
we split all users in each of the three datasets into 10 groups. The
first group is the bottom 10% users who are the least sociable, i.e.,
having fewest friends. The 10th group contains the top 10% most
sociable users. Figure 5 shows the performance results of NMR,
NMP at top-20 recommendations and RMSE with different user
types on the PH-Restaurants dataset.

The results show that all approaches tend to perform better on
more sociable users as such users have more social relationships
with other users that can be exploited by themodels. Again, TSNPF out-
performs the others.

7 CONCLUSIONS AND FUTUREWORK
Wepropose the Topic Social Network Poisson Factorization (TSNPF)
to jointly model rating matrix, review texts and social relationships
in a comprehensive manner. TSNPF extracts topics of users and
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items reasonably as well as supports measuring of user similarities
naturally. To address the data sparsity in high-quality recommen-
dations, we use the Gamma-Poission generative process which
only uses non-zero observations to model item attributes and user
preferences. Experimental results show that TSNPF significantly
outperforms alternative methods in item recommendation.

There are other kinds of heterogeneous data in addition to rat-
ings, social relations and review, e.g., metadata and visual content.
A potential future work is to integrate them into our model to make
even better recommendations. In addition, TSNPF only iterates over
the non-zero observations. Thus, the coordinate ascent algorithm
in our TSNPF is efficient. However, it is still difficult to fit TSNPF to
very large datasets and therefore a stochastic variational inference
algorithm [19] is needed in such cases. Furthermore, our approach
uses a directed graphical model (Bayesian network) to capture user
preferences and item features. Nevertheless, it is interesting to use a
neural network instead of the graphical model, as studies show that
neural networks can approximate arbitrarily complex functions [3]
and thus have more powerful expression ability.

A APPENDIX
A.1 Derivation of the Complete Conditionals
To facilitate inference, we want to make TSNPF conditionally conju-
gate. To achieve this, we introduce some auxiliary vector variables
(x Iiw , x

U
uw , zuvi and yui ) in which each element is sampled from

a Poisson distribution. Due to the given Poisson observations and
Gamma priors of variables, the complete conditionals of these vari-
ables are still Gamma distributions. Hence, we use these auxiliary
variables instead of actual observations to derive the complete con-
ditionals of Gamma variables. Take ϵwk as an example, as described
in the generative process, the conjugate prior of ϵwk is

p̂ (ϵwk ) =
εaw
Γ(a)

ϵawk exp(−εwϵwk )

=

Base measure︷  ︸︸  ︷
ĥ(ϵwk ) exp

(
(a − 1,−εw )⊤ (log ϵwk , ϵwk ) −

Log-normalizer︷              ︸︸              ︷
A
(
(a − 1,−εw )

) )
.

Here, (a−1,−εw ) and (log ϵwk , ϵwk ) are the natural parameters and
sufficient statistics of this prior, respectively. Given the auxiliary
variablesx I andxU and other variablesπ:,k andσ:,k , the conditional

distribution is described as follows:

p (ϵwk |x
I ,xU ,π:,k ,σ:,k )

∝ p̂ (ϵwk )
∏
i
p (x Iiw,k |ϵwk ,πik )

∏
u

p (xUuw,k |ϵwk ,σuk )

∝ p̂ (ϵwk )
∏
i

(ϵwkσuk )
xUuw,k exp(−ϵwkσuk )

xUuw,k !

∏
u

p (xUuw,k )

∝ p̂ (ϵwk )
∏
i

( 1
x Iiw,k !

exp
(
(log ϵwk + logσuk )xUuw,k − ϵwkσuk

))
∏
u

p (xUuw,k )

∝ ĥ(ϵwk )
∏
i

1
x Iiw,k !

exp
( η︷                                          ︸︸                                          ︷(
a +
∑
i
x Iiw,k − 1,−(εw +

∑
i
πik )
)
⊤

(log ϵwk , ϵwk ) −A(η)
)∏

u
p (xUuw,k )

∝

New base measure h (ϵwk )︷                                    ︸︸                                    ︷
(ĥ(ϵwk )

∏
i

1
x Iiw,k !

∏
u

1
xUuw,k !

)

exp
( η︷                                                                          ︸︸                                                                          ︷(
a +
∑
i
x Iiw,k +

∑
u

xUuw,k − 1,−(εw +
∑
i
πik +

∑
u

σuk )
)
⊤

(log ϵwk , ϵwk ) −

New log-normalizer︷︸︸︷
A(η)

)
Subsequently,

(
a+
∑
i
x Iiw,k+

∑
u
xUuw,k−1,−(εw+

∑
i
πik+

∑
u
σuk )
)
are

the natural parameters of the conditional distribution ofp (ϵwk |x
I ,xU ,

π:,k ,σ:,k ). Thus,

ϵwk |x
I ,xU , ϵ:,k ,π:,k ,σ:,k ∼ (2)

Gamma(a +
∑
i
x Iiw,k +

∑
u

xUuw,k , εw +
∑
i
πik +

∑
u

σuk )

For conditional distribution of εw , the latent topic rate,

p (εw |ϵ:,k ) ∝ ĥ(εw ) exp
(
(a′ − 1,−b)⊤ (log εw , εw ) −A(a′,b ′)

)
∏
k

(ϵwk )
a−1

Γ(a)
exp
(
(a,−ϵwk )

⊤ (log εw , εw )
)

∝
(
ĥ(εw )

∏
k

(ϵwk )
a−1

Γ(a)

)
exp
((
a′ + Ka − 1,−(b +

∑
k

ϵwk )
)⊤

(log εw , εw )
)

⇒ εw |ϵ:,k ∼ Gamma(a′ + Ka,b ′ +
∑
k

ϵwk )

The variational parameters in the conditional distributions of other
variables (πik ,ϖi , βik , αi , σuk , ςu , θuk and ϑu ) are derived likewise.

The final latent variables are the auxiliary variables. Recall that
each x Iiw or xUuw is a K-vector of Poisson counts that sum to the
observationsC I

iw orCUuw , respectively; each zuvi , in the 2K simplex,
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or yui , in the 4K simplex, is a vector of Poisson counts that sum to
the observations Suvi and Rui , respectively. It is proved that the
conditional distribution of a set of Poisson variables, given their
sum, is a multinomial for which the parameters are their normalized
set of rates [8, 25]. Thus, the complete conditionals for these vectors
are

x Iiw |πi , ϵw ,C
I
iw ∼ Mult(C I

iw ,
πiϵw∑

k πikϵwk
) (3)

xUuw |σu , ϵw ,C
U
uw ∼ Mult(CUuw ,

σuϵw∑
k σukϵwk

)

zuvi |σu ,θu ,σv ,θv , Suvi ∼ Mult
(
Suvi ,

(σu ,θu ) ⊙ (σv ,θv )∑
k (σukσvk + θukθvk )

)
yui |πi , βi ,σu ,θu ,Rui ∼

Mult
(
Rui ,

(πi ,πi , βi , βi ) ⊙ (σu ,θu ,σu ,θu )∑
k (πikσuk + πikθuk + βikσuk + βikθuk )

)
Above, ⊙ denotes the element-wise multiplication operation.

A.2 Derivation of the Parameters Update
The objective of variational inference is to minimize the KL diver-
gence between an exponential family member q and the posterior p.
For similarity, we use X and V to denote the set of all observations
and the set of all variational variables, respectively. Suppose Λ is
the parameters of the distribution q(V ) that governs V , and the
distribution q(V ) and the conditional distribution p (V |X ) are both
in the exponential families. In this case, we let Λ be the natural
parameters of q(V ). Thus,

p (V |X ) = h(V ) exp
(
η(V |X ,p)⊤T (X ) −A(η(V |X ,p))

)
q(V ) = h(V ) exp

(
Λ⊤T (V ) −A(Λ)

)
Above, η(·), T (·), h(·) and A(·) are the functions of natural pa-
rameters, sufficient statistics, base measure and log-normalizer,
respectively. Thus, Λ = η(V ,q). In practice, we often transfer this
minimization into maximization of a lower bound on the loga-
rithm of the marginal probability of the observations logp (X ,V )
called the evidence lower bound (ELBO) [22] of q. It is defined as
L (q) = Eq [logp (X ,V )]−Eq [logq(V )]. The KL divergence is equal
to the negative ELBO up to logp (X ) which is a constant as it does
not depend on q:

KL
(
q(V ) | |p (V |X )

)
= Eq [logq(V ) − Eq [logp (V |X )]
= Eq [logq(V )] − Eq [logp (X ,V )] + logp (X )

= −L (q) + const

Besides,

L (q) = Eq [logp (X ,V )] − Eq [logq(V )]
= Eq [logp (V |X )] − Eq [logq(V )] + const
= Eq [η(V |X ,p)⊤∇ΛA(Λ)] − Λ⊤∇ΛA(Λ) +A(Λ) + const(

Because Eq [T (V )] = ∇ΛA(Λ)
)

⇒ ∇ΛL = ∇
2
ΛA(Λ)

(
Eq [η(V |X ,p)] − Λ

)
Setting the gradient ∇ΛL to be zero, we get the closed form param-
eters update: Λ = Eq [η(V |X ,p)].

When q(V ) is a mean-field family member, the natural param-
eters of q(V ) are just the Cartesian product of its corresponding

elements, respectively. Suppose V = {v1, ...,v |V | } and λ1, ...λV
are the natural parameters of the distributions q(v1), ...,q(v |V | ),
respectively. Then Λ = (λ1, ..., λ |V | ). In addition, directly getting
η(V |X ,p) is difficult as it involves all of the variable and observa-
tions. Thus we usually iteratively optimize every natural parameter
λi for 1 ≤ i ≤ |V | using coordinate ascent algorithm by holding the
parameters of all other variables fixed. Note that in this case these
fixed variables become observations and the conditional distribu-
tion of a variable becomes the corresponding complete conditional.
Each λi equals to the expected natural parameter (under q) of the
complete conditional of vi , i.e.,

λi = Eq [η(vi |X ,V \vi ,p)]

More details about coordinate ascent algorithm can be found in [4,
19].

By applying the derivations above into our TSNPF, we can easily
derive the closed form variational parameters update in the main
body of the paper. For simplicity, here we only give two examples:
1). µwk , the variational parameters of ϵwk which is sampled from
a Gamma distribution and 2). χ Iiw , the variational parameters of
x Iiw of which every element x Iiw,k is sampled from a Poisson dis-
tribution but the conditional distribution given other observations
and variables is a multinomial. The updates for the variational pa-
rameters of the other Gamma and multinomial latent variables are
similarly derived.

From Eq.(2), the natural parameters of the conditional distribu-
tion p (ϵwk |x

I ,xU ,π:,k ,σ:,k )) and the distribution q(ϵwk |µwk ) are(
a +
∑
i
x Iiw,k +

∑
u
xUuw,k − 1,−(εw +

∑
i
πik +

∑
u
σuk )
)
and (µ

shp
wk −

1,−µr tewk ), respectively. As the natural parameters (µshpwk − 1,−µ
r te
wk )

are the affine transformation of shape and rate parameters—µ
shp
wk

and µr tewk , the update of variational parameters of gamma variable
ϵwk are just the expectations of the shape and rate parameters of
the complete conditional distributions under q, i.e.,

µ
shp
wk = Eq [a +

∑
i
x Iiw,k +

∑
u

xUuw,k ]

= a +
∑
i
C I
iw χ Iiw,k +

∑
u

CUuw χUuw,k

µr tewk = Eq [εw +
∑
i
πik +

∑
u

σuk ]

=
ι
shp
w
ιr tew
+
∑
i

ρ
shp
ik

ρ
shp
ik

+
∑
u

ν
shp
uk

ν
shp
uk

Notice that the expectation of x Iiw,k equals to k-th probability of
the multinomial χ Iiw,k times the word count C I

iw , i.e., Eq [x Iiw,k ] =
C I
iw χ Iiw,k .
The natural parameters of x Iiw,k is log χ Iiw,k . Due to the assump-

tion of mean-field family, the natural parameters of x Iiw are just the
Cartesian product of every log χ Iiw,k , i.e., η(x

I
iw ) = (log χ Iiw,1, ...,

log χ Iiw,K ). FromEq. (3), the conditional distributionp (x Iiw |πi , ϵw ,C
I
iw )

is a multinomial. The natural parameters of this conditional distribu-
tion are the logarithms of event probabilities, i.e.,η(x Iiw |πi , ϵw ,C

I
iw )

=
(
(logπi1 + log ϵw1) − r , ..., (logπiK + log ϵwK ) − r

)
where r =
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log(
∑
k πikϵwk ). Thus,

log χ Iiw,k = Eq [logπik + log ϵwk − r ]⇒

χ Iiw,k = exp(Eq [logπik + log ϵwk − r ])

∝ exp
(
Ψ(ρ

shp
ik ) − log ρr teik + Ψ(µ

shp
wk ) − log µr tewk

)
Above, Ψ(·) is the digamma function. This update comes from the
expectation of the log of a Gamma variable, e.g., Eq[logπik ] =
Ψ(ρ

shp
ik ) − log ρr teik . Let

χ̂ Iiw,k = exp
(
Ψ(ρ

shp
ik ) − log ρr teik + Ψ(µ

shp
wk ) − log µr tewk

)
Then

χ Iiw,k =
χ̂ Iiw,k∑
k χ̂ Iiw,k

. (4)

Eq. (4) guarantees that χ Iiw is a K-vector whose elements sum to
one.
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