
LISA: A Learned Index Structure for Spatial Data
Pengfei Li

Zhejiang University, China
pfl@zju.edu.cn

Hua Lu
Roskilde University, Denmark

luhua@ruc.dk

Qian Zheng
NTU, Singapore

zhengqian@ntu.edu.sg

Long Yang
Zhejiang University, China

yanglong@zju.edu.cn

Gang Pan
Zhejiang University, China

gpan@zju.edu.cn

ABSTRACT
In spatial query processing, the popular index R-tree may
incur large storage consumption and high IO cost. Inspired
by the recent learned index [17] that replaces B-tree with
machine learning models, we study an analogy problem for
spatial data. We propose a novel Learned Index structure
for Spatial dAta (LISA for short). Its core idea is to use ma-
chine learning models, through several steps, to generate
searchable data layout in disk pages for an arbitrary spatial
dataset. In particular, LISA consists of a mapping function
that maps spatial keys (points) into 1-dimensional mapped
values, a learned shard prediction function that partitions the
mapped space into shards, and a series of local models that
organize shards into pages. Based on LISA, a range query
algorithm is designed, followed by a lattice regression model
that enables us to convert a KNN query to range queries.
Algorithms are also designed for LISA to handle data up-
dates. Extensive experiments demonstrate that LISA clearly
outperforms R-tree and other alternatives in terms of storage
consumption and IO cost for queries. Moreover, LISA can
handle data insertions and deletions efficiently.

KEYWORDS
Database; Spatial index; Learned Index
ACM Reference Format:
Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020.
LISA: A Learned Index Structure for Spatial Data. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3318464.3389703

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3389703

1 INTRODUCTION
To support efficient queries, spatial databases have for decades
relied on delicate indexes. Among others, R-tree [13] is the
most popular spatial index that prunes irrelevant data for
queries, i.e., avoiding accessing data chunks without desired
data. However, this classical index-centric paradigm is in-
creasingly being challenged in the era of big spatial data.

On the one hand, the ever-increasing data volume entails
large R-trees. Sometimes, R-trees are larger than their un-
derlying datasets, especially if the data features more spatial
dimensions, there are few non-spatial attributes, and/or the
R-tree’s disk page utilization ratio [21] is small. This imposes
severe storage pressure on spatial databases, and slows down
search algorithms by too many tree node visits. On the other
hand, the velocity of big spatial data, e.g., fast updates of lo-
cations, causes R-trees out of date very frequently. To ensure
the freshness of an R-tree, we have to perform frequent and
efficient updates on the tree. This makes it difficult to im-
plement and maintain R-trees, and the impact is even worse
when velocity and volume issues co-exist. Consequently,
R-tree and its variants [4, 15] fall short in indexing big spa-
tial data today. Spatial databases call for outside-the-box,
paradigm-changing innovations that can replace R-trees to
meet the demands of big spatial data.

A recent work [17] replaces B-tree indexing 1-dimensional
data with a recursive model index (RMI) that consists of a
number of machine learning models staged into a hierarchy.
RMI assumes that the data is sorted and kept in an in-memory
dense array. Given a search key x , RMI predicts, with some
error bound, where x ’s data is positioned in the array. The
position prediction is equivalent to approximating the cumu-
lative distribution function (CDF) of all search keys. RMI is
able to process point and range queries in the 1-dimensional
space. With a learned CDF F (x), to get all keys in [x1, x2],
RMI calculates F (x1) and F (x2). The keys stored between
positions F (x1) − ϵ and F (x2) + ϵ form the predicted answer
for the range query, where ϵ is the error bound.

However, the idea of RMI does not fly in the context of spa-
tial data. First of all, spatial data invalidates the 1-dimensional
data assumption required by RMI. Although it is possible to
learn multi-dimensional CDFs, such CDFs cannot provide

https://doi.org/10.1145/3318464.3389703
https://doi.org/10.1145/3318464.3389703

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan

for a range query elegant lower/upper bounds which require
only two searches via model prediction. In contrast, such
CDFs will result in searching local regions qualified on one
dimension but not all dimensions. Moreover, when the data
is disk-resident, even a small error bound ϵ means accessing
several extra pages for locating a search key not in the pre-
dicted page. When processing a spatial query that needs to
load a number of pages, RMI will have to access many pages,
incurring considerable IO cost.

The recent Z-order Model (ZM) [29] combines the Z-order
space filling curve [25] and RMI to index spatial data. How-
ever, it needs to check many irrelevant keys for range queries
and does not support KNN queries or data updates.

In this paper, we propose a novel Learned Index structure
for Spatial dAta (LISA). Its core idea is to use machine learn-
ing models, through several well designed steps, to generate
searchable data layout in disk pages for an arbitrary spatial
dataset. It adopts an easy yet effective strategy—partitioning
space into a series of grid cells based on the data distribution
along a sequence of axes and numbering the cells also along
these axes. LISA builds a partially monotonic functionM
according to the borders of cells to map the data fromRd into
R. If two spatial points, i.e., keys, x0 and x1 are in the cells
Ci and Cj , respectively, and i < j, thenM(x0) < M(x1) is
guaranteed to hold. Furthermore, based on the keys’ mapped
values, LISA learns a monotonic function SP composed of a
series of piecewise linear functions in order to assign a shard
id to each mapped value. By tuning SP’s parameters, each
shard contains similar numbers of keys. By building a local
model that manages the keys for each shard, the keys that fall
in the same shard are stored in one or more consecutive disk
pages, and two keys with different shard ids are stored in two
different pages. In general, local models are responsible for
allocating pages to store keys and splitting or merging pages
to update data. Therefore, our LISA is also able to handle data
updates including insertion and deletion. Unlike RMI [17]
that fixes the data layout first and then learns the model
to approximate the layout, LISA uses the learned model to
generate the data layout (shards).

The unique shard ids

A query rectangle

The key of a record

X00

X1

Border line for shards

Border line for cells

An Intersection point of a
query rectangle and a grid

Figure 1: An example of data layout with shards

Fig. 1 gives an example of shard layout in LISA. To ac-
cess all keys falling in a range query’s rectangle qr , we
only need to search all cells that overlap with this rectangle.

For each such cell Ci , suppose qri = qr ∩ Ci = [l0,u0) ×

· · · × [ld−1,ud−1)]. We calculateml =M
(
(l0, . . . , ld−1)

)
and

mu = M
(
(u0, . . . ,ud−1)

)
, use SP to obtain the relevant

shards that intersect with M−1 ([ml ,mu)
)
, and use the lo-

cal models to access the data of the keys falling in qri .
In LISA, a KNN query is converted to range queries. We

propose a lattice regression model LR to estimate a range
query’s rectangle size for a given query point and K . Sub-
sequently, a range query with that estimated rectangle size
is executed. If the range query returns less than K nearest
neighbors, the range will be augmented for another range
query until sufficient neighbors are found.

The storage consumption of LISA is considerably smaller
than R-tree that has to materialize a tree with all nodes and
entries based on MBRs and parent-children relationships. In
contrast, LISA only keeps the parameters ofM,SP, the local
models, and LR for KNN query. Specifically,M’s parame-
ters contain several numbers and a small list only, and SP
is composed of a series of piecewise linear functions whose
parameters are a number of coefficients. A local model’s pa-
rameters are usually several numbers as well, and storing a
lattice regression model requires little space.
Overall, compared to the traditional R-tree, LISA makes

significant improvements in multiple aspects. First, LISA’s
storage consumption is considerably smaller. Second, LISA in-
curs much less IO cost when processing range and KNN
queries. Third, LISA supports data updates, i.e., insertion and
deletion, efficiently.

Our contributions in this paper are summarized as follows.

• We design LISA, a novel learned index structure, for disk-
resident spatial data. To the best of our knowledge, it is the
first full-fledged learned index for spatial data. (Section 3)
• We design an efficient algorithm to process range query
using LISA, followed by a lattice regression model that
enables us to process a KNN query as a series of range
queries in LISA. (Section 4)
• We devise efficient algorithms to update LISA for key in-
sertions and deletions. (Section 5)
• We conduct extensive performance evaluation using real
and synthetic data. The results demonstrate that LISA out-
performs alternative methods in terms of storage consump-
tion and IO cost for range and KNN queries. Also, LISA is
able to handle data updates efficiently. (Section 6)

In addition, Section 2 formulates the research problem and
introduces our solution framework, Section 7 reviews the
related work, and Section 8 concludes the paper and points
to future research directions.

2 PRELIMINARIES
This section presents the definitions, a baseline method, and
an overview of LISA. Table 1 lists the important notations.

LISA: A Learned Index Structure for Spatial Data SIGMOD’20, June 14–19, 2020, Portland, OR, USA

Table 1: Notations
d The dimensionality of data keys
V the whole space with V = [0,X0) × · · · × [0,Xd−1)

Ci The ith cell
Si The ith shard
M Mapping function
SP Shard prediction function
Li The shard Si ’s corresponding local model
Ω The maximum number of keys stored in a page

Ψ
The average number of keys in the initial dataset
falling in a shard

σ
The number of break points in SP’s each piecewise
linear function

2.1 Definitions
Without loss of generality, we work on spatial data in a
d-dimensional space V = [0,X0) × · · · × [0,Xd−1) ⊆ R

d .
Definition 1 (Key). A key k is a unique identifier for a

data record with k = (x0, ..., xd−1) ∈ R
d .

We have 0 ≤ xi < Xi for 0 ≤ i < d . A key (x0, ..., xd−1) is
also a point in V . We use a grid to partition V into cells.
Definition 2 (Cell). A grid cell cell is a (hyper)rectangle

inV whose lower and upper corners are points (l0, . . . , ld−1)

and (u0, . . . , ud−1), i.e., cell = [l0,u0) × · · · × [ld−1,ud−1).
In addition to the grid, we map each d-dimensional point

into a sequential order using a mapping function.
Definition 3 (Mapping Function). Amapping function
M is a partially monotonic function on the domain V to the
non-negative range, i.e., M : [0,X0) × · · · × [0,Xd−1) →

[0,+∞), such that M
(
(x0, ..., xd−1)

)
≤ M

(
((y0, . . . ,yd−1)

)
when x0 ≤ y0, . . . , xd−1 ≤ yd−1.

In our setting, the mapped values are used to organize
spatial keys in sequential disk pages in a spatial database. For
a page P , P .keys denotes the set of keys stored in P , andM(P)
denotes the set of P .keys’ mapping results, i.e., M(P) ≜
M(P .keys). For a page P and a key k = (x0, . . . , xd−1), if
infM(P)≤M(k) ≤supM(P)1, keyk must be stored in page
P in our setting. In this case, we say page P contains key k .

With these basic definitions, we design a baseline method.

2.2 Baseline Method
Given a mapping functionM, we can extend the learned
index method for range query on scalar values [17] to spatial
data. This baseline method works as follows. We sort all keys
according to their mapped values, store them in a number of
pages with each page fully utilized, and store the addresses
of these pages in a dense array. Suppose d = 2. If a point
(x,y)’s mapped value is larger than those of the keys stored
in the first j pages, i.e., M

(
(x,y)

)
> sup

⋃j−1
i=0M(Pi), we

store (x,y) in page Pj , i.e., the page address index of (x,y)
is j. Here, the first j pages’ addresses are exactly the first j
1inf(S) and sup(S) denote a set S’s lower and upper bounds, respectively.

items in the dense array. Subsequently, for a query rectangle
qr = [l0,u0) × [l1,u1), we only need to predict i1 and i2, the
indices of (l0, l1) and (u0,u1), respectively, load the i2 − i1 + 1
pages, and scan those pages to find those keys that fall in
the query rectangle qr .
However, the baseline suffers from a severe problem—

many pages irrelevant to the query rectangle may be loaded,
incurring considerable unnecessary IOs. Fig. 2 shows an
example where the mapping function isM

(
(x,y)

)
= x + y.

As a result, the dataset is partitioned into three parts. The
query rectangle fully falls inside the second part. This results
in many, namely 11, irrelevant points accessed for the range
query that only contains three relevant keys.

x

y

Query Rectangle

A key falling in the rectangle

A key not falling in the rectangle
but still being accessed

A key not accessed

Figure 2: Baseline method pitfall

Let G = M−1([M
(
(l0, l1)

)
,M

(
(u1,u1)

)
]). In the baseline

method, G \ qr may be large and contain many keys, which
increases the IO cost of a range query. The location and
shape of a query rectangle are not fixed in advance. When
fixing a mapping functionM, the Lebesgue measure [24]
µ(G \ qr) is large for most rectangles, which causes many
keys to be loaded unnecessarily. To address this problem, we
design a general learned indexing method LISA that works
for arbitrary spatial datasets.

2.3 LISA Overview
Our LISA goes beyond the cells generated by the mapping
functionM. Conversely, we are also interested in the key
set that maps to a known interval in the range [0,+∞).
Definition 4 (Shard). A shard S is the preimage of an

interval [a,b) ⊆ [0,+∞) under the mapping functionM, i.e.,
S =M−1 ([a,b)) .

Given an initial dataset, we build a mapping functionM
based on the data distribution. After getting the mapped
values of all keys, a monotonic shard prediction function
SP is learned to partition the keys into different shards.
Supposemi = inf SP−1 ([i, i + 1)

)
andmi+1 = inf SP−1 ([i +

1, i + 2)
)
for mapped valuesmi andmi+1. The ith shard Si ≜

M−1 ([mi−1,mi)
)
.

In our setting, all shards exhibit a total order with respect
to their corresponding intervals in the mapped range. In
addition, all shards are disjoint with each other and the union
of them is contained in V . According to the definitions of
the mapping function and shard, it is apparent that

infM(Si) > supM(S j) when i > j (1)

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan

0

generate cells
and build M

learn SP and use it
to generate shards

build local models and
use them to assign
pages for all shards

0X0

X1

0X0

X1

0
(a) (b) (c) (d)

X1 X1

X0 X0

Figure 3: LISA framework
Further, the keys in a shard are stored in a number of disk

pages, whereas the keys in one page must come from the
same shard. In contrast, the keys in a grid cell may corre-
spond to a number of pages, and vice versa. In other words,
we have a one-to-many relationship between shards and
pages, and a many-to-many relationship between cells and
pages. If a page P overlaps with a grid cellC ⊆ V , there are
points stored in P that fall in C . If shard S ⊆ V contains a
page P , any key stored in P falls in S . We use local models to
determine the page addresses for the keys in a shard.

Definition 5 (LocalModel). A local modelLi is a model
that processes operations within a shard Si . It keeps dynamic
structures such as the addresses of pages contained by Si .

Given a spatial dataset, we generate the mapping function
M, the shard prediction function SP and a series of local
models. Based on them, we build our index structure, LISA, to
process range query,KNN query and data updates. LISA aims
to reduce the storage consumption and IO cost compared to
existing indexes such as R-Tree.

Essentially, LISA consists of four parts: the representation
of grid cells (Section 3.1), the mapping function M (Sec-
tion 3.2), the shard prediction function SP (Section 3.3), and
the local models for all shards (Section 3.5). As illustrated
in Fig. 3, the procedure of building LISA is composed of the
steps to build the four parts.

To get all pages that overlap with a query rectangle qr , we
first decompose qr into a number of smaller rectangles each
intersecting only one cell. For each such cell Ci , we use SP
to select the shards inCi that overlap with qr . Finally, we use
local models to get the addresses of the pages overlapping
with qr . The details are given in Section 4.1. In LISA, a KNN
query is converted into a series of range queries. We build
a lattice regression model to estimate an appropriate query
range for a query point andK . The query range is augmented
if less than K neighbors are found in a range query. The
details are given in Section 4.2.
To insert or delete a key k , the first step is to calculate

k’s mapped value. Next, k’s shard is obtained through SP.
Subsequently, the local model will locate the corresponding
disk page within the corresponding shard. For an insertion
(Section 5.1), if the page is full, the local model will split
it. For a deletion (Section 5.2), the local model will count
the keys stored in the page from which k is to be deleted.
Different strategies may be executed, e.g., consecutive pages
may be merged if they each contain too few keys.

3 DESIGN AND TRAINING OF LISA
3.1 Generating Grid Cells
On each dimension, we partition the space V along the xi -
axis intoTi parts such that the initial dataset’s keys are evenly
covered by every part. We use Θi = [θ

(i)
1 , ..., θ

(i)
Ti
] to denote

the border points generated by the partition operation for
the xi -axis. The whole space V can be represented by the
union of a series of disjoint cells, i.e. V =

⋃T0×···×Td−1−1
t=0 Ct

where

Ct = [θ
(0)
j0 , θ

(0)
j0+1) × · · · × [θ

(d−1)
jd−1
, θ (d−1)

jd−1+1),with

t =
(((

j0 ×T1 + j1
)
×T2 + j2

)
× · · ·

)
×Td−1 + jd−1

Note that every partition operation for a part along the
xi -axis can also be performed using a 1-dimensional mono-
tonic regression model. The model’s input is merely the xi
components of the keys falling in the part. Its output range
is [0,Ti]. When Ti is large, saving the model may need less
storage space than keeping Θi . In practice, each Ti is set to
a small number (less than 300). In this paper, we only keep
the lists of those border points.
Given a query rectangle qr ⊆ Rd , we can easily get the

grid cells that intersect qr . Let those cells beCi0 ,...,CiQ . Then,
qr can be rewritten as qr =

⋃Q
j=0 qr j with qr j = qr ∩Ci j . To

query all keys that fall in qr , we only need to search Q + 1
cells. This way reduces the search space considerably.
In some extreme cases, the keys fall in only a few cells.

Fig. 4.(a) shows such an example, where only 3 out of 9 cells
contain keys. In this case, the aforementioned original parti-
tioning strategy needs to be modified. First, we partition the
space V along the x0-axis into T0 parts such that the initial
dataset’s keys are evenly covered by every part. Next, each
part is partitioned along the x1-axis to generate T1 smaller
parts. Further, the smaller parts are partitioned along the
x2-axis. This process is repeated until the whole space is
partitioned along all the d axes. Fig. 4.(b) illustrates the pro-
cedure for the case of d = 2. Note that applying the modified
strategy requires us to keep more parameters. In practice,
we can choose to apply the modified and original strategies
along different axes. We use a simple strategy to detect the
extreme cases. For each axis, we calculate the variance of
the number of keys falling in a part. If the variance is larger
than a pre-defined threshold, LISA will perform the modi-
fied strategy for this axis. Usually, if the data distribution is

LISA: A Learned Index Structure for Spatial Data SIGMOD’20, June 14–19, 2020, Portland, OR, USA

complicated, we apply the modified strategy along the first
d − 1 axes, and the original strategy along the last axis.

X0

X1

0
(a) (b)

X0

X1

0

Figure 4: Original andmodified partitioning strategies

3.2 Mapping FunctionM
The mapping functionM should satisfy the condition

M(xi ∈ V) <M(xj ∈ V) when i < j, where
xi ∈ Ci and xj ∈ Cj (2)

A naive way to guarantee it is to setM(x) = i if x ∈ Ci .
However, a cell may contain multiple keys, and two keys’
mapped values may be different. To avoid this, we give a
more proper definition ofM. Suppose x = (x0, ..., xd−1) and
x ∈ Ci = [θ

(0)
j0 , θ

(0)
j0+1) × · · · × [θ

(d−1)
jd−1
, θ (d−1)

jd−1+1) then

M(x) = i +
µ(Hi)

µ(Ci)
, where Hi = [θ

(0)
j0 , x0) × · · · × [θ

(d−1)
jd−1
, xd−1)

Above, µ is the Lebesgue measure [24] on Rd . It is easy to
checkM is well-defined.

3.3 Shard Prediction Function SP
The RMI [17] model is based on a simplifying assumption
that 1-dimensional data is sorted by keys and stored in an
in-memory dense array. Given a search key, RMI predicts its
index in the array, with an error bound within which it is
guaranteed the key’s data record will be found. When the
idea of RMI is applied to data stored in disk pages, the error
bound can result in considerable page accesses before the
key’s data is found in a particular page. In other words, the
RMI can incur considerable IO cost for search in disk pages.
To reduce IO cost in the context of disk pages, we need to
design a learned model different than RMI.
In essence, every key in RMI has a unique array index

and RMI predicts a key’s array index with an error as small
as possible. In other words, the data layout is already fixed
before the RMI is trained. However, it is difficult to train a
regression model with zero loss, especially when the keys
are stored in disk pages instead of a dense array. We consider
this problem from a different angle. Rather than fixing the
data layout using a regression model that can predict a key’s
position, we design and train a model that directly arranges
the data layout in disk pages.

The shard prediction functionSP attempts to do so. Specif-
ically, SP : R → [0,+∞) whose input is a key’s mapped
value determines which keys should be assigned with the

same shard id and stored together. Note that if we directly ex-
tend the idea in [17], the shard ids of all keys should be fixed
in the beginning and we need to approximate the mapping
between the keys and fixed shard ids.

Basically, SP is a regression model. First, we sort all keys’
mapped values and save them in a dense array. The mapped
values and their array indices are the training input of SP.
After SP is trained, for a point x ∈ Rd with mapped value
m, its shard id is decided to be ⌊SP(m)⌋. SP must be con-
strained to be monotonic such that the condition in Formula
(1) can be guaranteed.

In theory, SP can be any monotonic regression model.
However, considering the diversity of data distributions in
real-life applications, it is difficult to use a single regression
model to predict the indices of all mapped values accurately
unless the model size is sufficiently large. Existing index
structures like B-Tree or R-Tree all partition the data into a
hierarchy, narrowing the search space and reducing search
errors for key finding. This strategy is effective on general
datasets. Likewise, we introduce a simple yet effective way
to build and train SP according to a similar strategy.
Like RMI [17], SP is also a staged model. Suppose SP

contains U small regression models at the bottom level. We
simply find a list of numbers Mp = [m̃1, ...,m̃U] to evenly
partition the mapped values, i.e., to make the numbers of
mapped values in [m̃i−1,m̃i) almost the same for 0 ≤ i <U .
Because the mapped values are sorted, performing this oper-
ation is fast. For each part, we build a monotonic regression
model Fi whose domain is [m̃i−1,m̃i). If Fi needs to process
too many mapped values, Fi itself can be a staged model. In
our experiments, each Fi handles less than 50,000 mapped
values and it is not staged.

RMI [17] adopts neural networks [27] as the regression
models. However, for a neural network to guarantee the
monotonicity and have enough expressive power, its size
must be large. For example, to constrain a general fully con-
nected neural network to be monotonic, a general way is to
set the neurons in the fully-connected layers non-negative.
In this case, many activation functions (e.g., ReLU) will not
work and the fully-connected network almost becomes a
linear regression function. Besides, it is difficult for a neural
network to approximate a non-smooth function in practice.

0 2K 4K 6K 8K
mapping

0
5K

10K
15K
20K
25K
30K
35K
40K

po
sit
io
n

Figure 5: Example of keys’
mapped values vs. indices

Fig. 5 gives an exam-
ple of a real dataset for
which we randomly se-
lect a small regression
model Fi and obtain the
list of sorted mapped val-
ues to be processed. The
figure illustrates the re-
lationship between the

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan

mapped values of keys and their indexes in the list. It is
difficult for a neural network to approximate this complex
relationship, especially if the network is not large. To cap-
ture the relationship, we use monotonic piecewise linear
functions instead. This gives three advantages: 1) It is much
easier to constrain a piecewise linear function to be mono-
tone. 2) To achieve the same precision, the parameter size of
a piecewise linear function is smaller than that of a neural
network. 3) It takes much less time to train piecewise linear
functions. We proceed to detail how to train SP.

3.4 Training of SP
LetMp = [m̃1, ...,m̃U] denote the number list that partitions
the mapped values (Section 3.3). SupposeV +1 is the number
of mapped values that each Fi needs to process and Ψ is the
estimated average number of keys falling in a shard. Thus,
each Fi generates D = ⌈V+1

Ψ ⌉ shards. The shard prediction
function SP with input x ∈ R is expressed as follows.
SP(x) = Fi (x) + i × D, where i = binary-search(Mp , x)

Let x = (x0, · · · , xV) be the keys’ mapped values that fall
in [m̃i−1,m̃i). Without loss of generality, suppose x is sorted,
i.e., xi ≤ x j ,∀0 ≤ i < j ≤ V . Let y = (0, · · · ,V). We first
build a piecewise linear regression function fi with inputs x
and y. For a given point with mapped valuem ∈ [m̃i−1,m̃i),
its shard id is ⌊ fi (m)Ψ ⌋ + i × D, i.e., Fi (x) =

fi (m)
Ψ .

Next, we describe how to build and train a general mono-
tone piecewise linear function f . GivenV + 1 sorted mapped
values x = (x0, · · · , xV) and their indices y = (0, · · · ,V),
each fi is built and trained with the same procedure.

A piecewise linear function can be described as follows,

f (x) =

b0 + a0(x − β0) β0 ≤ x < β1

b1 + a1(x − β1) β1 ≤ x < β2
...

...

bσ + aσ (x − βσ) βσ ≤ x

(3)

Here, β = (β0, β1, · · · , βσ) is the set of σ + 1 breakpoints.
Without loss of generality, this formulation assumes that the
breakpoints are ordered as β0 < β1 < · · · < βσ . It is hard
to guarantee Eq. (3) to be monotone even if we force every
ai ≥ 0 because this function may be not continuous. The
monotonicity condition can be easily satisfied if the piece-
wise linear functions are C0 continuous over the domain.
In this case, the slopes and intercepts of each linear region
depend on previous values. Let ᾱ = b0, Eq. (3) reduces to

f (x) =

ᾱ + α0(x − β0) β0 ≤ x < β1

ᾱ + α0(x − β0) + α1(x − β1) β1 ≤ x < β2

· · · · · ·

ᾱ + α0(x − β0) + α1(x − β1)

+ · · · + ασ (x − βσ) βσ ≤ x

(4)

To make Eq. (4) monotonically increasing, we only need
to guarantee

η∑
i=0

αi ≥ 0, ∀ 0 ≤ η ≤ σ . (5)

Let α = (ᾱ,α0,α1, · · · ,ασ). The square loss function L(α , β)
is defined as follows.

L(α , β) =
V∑
i=0

(
f (xi) − yi

)2 (6)

It is difficult to directly optimize the parameters α and β
together. We propose a simple approach which adopts the
idea of the optimal control to optimize α and β iteratively.

Fixing β = β̂ = (β̂0, β̂1, · · · , β̂σ), α can be regarded as the
least square solution of the linear equation Aα = y, where

A =

1 x0 − β̂0 (x0 − β̂1)1x0≥β̂1
. . . (x0 − β̂σ)1x0≥β̂σ

1 x1 − β̂0 (x1 − β̂1)1x1≥β̂1
. . . (x1 − β̂σ)1x1≥β̂σ

...
...

...
. . .

...

1 xN − β̂0 (xV − β̂1)1xV ≥β̂2
. . . (xV − β̂σ)1xV ≥β̂σ

The loss function is a quadratic function ofα . The solution

of α can be computed by solving the linear equation

∂E(α , β̂)

∂α
= 2A⊺r = 0,where r = Aα −y (7)

⇒ α = (A⊺A)−1A⊺y (8)

Since matrix A⊺A is symmetric, Eq. (7) can be solved by the
efficient Cholesky algorithm [28]. Clearly, different break-
points β give rise to different optimal parameters. The next
step is to choose an optimal breakpoint. Letα⋆(β) be the op-
timal α for particular breakpoints β . The problem becomes
to find β⋆ such that

L(α⋆(β⋆), β⋆) = min{L(α⋆(β), β)|β ∈ Rσ+1}

We define

д =
∂E(α , β)

∂β
= 2KGr , Y =

∂д

∂β
= 2KGG⊺K⊺

where

K = diag(ᾱ,α0, · · · ,ασ), G =

−1 −1 . . . −1
p(0)0 p(1)0 . . . p(V)0
p(0)1 p(1)1 . . . p(V)1
...

...
. . .

...

p(0)σ p(1)σ . . . p(V)σ

and

p(l)i = −1xl ≥βi .

Since д = ∇βL, −д specifies the steepest descent direction
of β for L. However, in practice, we do not use −д as the
direction for β ’s update—the convergence rate of −д is low

LISA: A Learned Index Structure for Spatial Data SIGMOD’20, June 14–19, 2020, Portland, OR, USA

since it does not consider the second-order derivative of L
w.r.t. to β . To address this problem, we perform the update
along the direction of s = −Y −1д. It is clear thatY is positive
definite. Thus, the update is guaranteed to be performed in
the descent direction. Let

д(k) = д|z=z (k), Y
(k) = Y |z=z (k), s

(k) = s |z=z (k)

where

z =

[
α
β

]
, z(k) =

[
α (k)

β (k)

]
In the beginning, we set β (0)0 = x0 and β (0)i = x ⌊i×VΨ ⌋

for
1 ≤ i ≤ σ . We obtain α (0) by solving Eq. (7). At iteration k ,
we perform a cell search along the direction s(s) to find the
update step lr (k) such that

L
(
α⋆(β (k) + lr (k)s(k)), β (k) + lr (k)s(k)

)
= min

{
L
(
α⋆(β (k) + lrs(k)), β (k) + lrs(k)

)
|

lr ≥ 0 and α⋆(β (k) + lrs(k)) satisfies Eq. (5)
}

At the next iteration, we increment k by one and set

β (k+1)
= β (k) + lr (k)s(k).

The iteration continues until L converges.

3.5 Local Models for Shards
For each shard Si , we can easily get the keys that fall in it and
their mapped values with the help of the mapping function
M and the shard prediction functionSP. If Si contains more
than Ω keys, we need to decide how to partition them and
save them in more than one page. The local model Li is
created for this and future operations.
Simply speaking, the parameters of Li consists of two

parts: PA is a list which stores the addresses of the pages that
overlap with Si , and PM is the sequence of sorted mapped
values to partition the keys in Si .

Suppose Ii = (k0, · · · ,kΓ−1) are the Γ keys which fall in
Si and are sorted along their mapped values. If Γ ≤ Ω, Ii can
be stored in one page. We only need to append the page’s
address in Li .PA and set Li .PM to be empty. If Γ > Ω, we
partition Ii along their mapped values into several pieces
and make each piece contain less than Ω keys. The keys in
each piece are stored in one page. The addresses of these
pages are appended to Li .PA, and Li .PM is the sequence of
the mapped values to partition I i . Algorithm 1 buildsM and
SP, generates shards and stores keys on disk. Lines 7-22 in
Algorithm 1 detail how to generate local models for shards.

The local model Li provides two different search func-
tions: lbound and ubound such that

Li .lbound(m) = j, where Li .PM[j − 1] < m ≤ Li .PM[j]

Li .ubound(m) = j, where Li .PM[j − 1] ≤ m < Li .PM[j]

WhenLi .PM is empty, bothLi .lbound(m) andLi .ubound(m)
are equal to 0. Suppose the size of Li .PM is J andmmax =

Li .PM[J − 1]. If m > mmax , Li .lbound(m) = J − 1 and
Li .ubound(m) = J − 1 whenm ≥ mmax .
The parameters of the mapping functionM and shard

prediction function SP will not change once they are built
and trained. On the contrary, Li .PA and Li .PM may be
changed due to data updates in shard Si .

Algorithm 1 BuildLISA
Input: I : keys in the initial dataset

Ω: predefined page size
Output: M: monotone mapping function
SP: shard prediction function
L: local models for all shards

1: for all i ← 0 to d − 1 do
2: partition V along the xi -axis and generate Θi
3: generate all grid cells based on all Θi s
4: generate mapping functionM
5: calculate the mapped values of all keys in I usingM
6: build SP and use it to partition V and generate shards
7: for each shard Si do
8: get Ii = (k0, · · · ,kΓ−1), the keys in I that fall in Si and

mi = (m0, · · · ,mΓ−1), the mapped values of I i
9: initialize Li by setting Li .PA and Li .PM to be empty
10: if Γ ≤ Ω then
11: allocate a new page P on disk and store I i in P
12: append the address of P to Li .PA
13: else
14: W ← ⌈ ΓΩ ⌉, ∆← ⌈

Γ
W ⌉

15: for j ← 1 to V − 1 do
16: allocate a new page P on disk
17: store I (j)i = (k(i−1)×∆, · · · ,ki×∆−1) in P
18: append the address of P to Li .PA
19: appendmi×∆ to Li .PM
20: store I (W)i = (k(W −1)×∆, · · · ,kΓ−1) in P
21: append the address of P to Li .PA
22: append Li to L
23: return M, SP, L

4 LISA-BASED QUERY PROCESSING
4.1 Range Query
Given a query rectangle qr = [l0,u0) × · · · × [ld−1,ud−1), we
first get the cells that overlap with qr and decompose qr
into the union of smaller query rectangles each of which
intersects one and only one cell. Suppose qr =

⋃Q ′
j=0 qr

′
j

with qr ′j = [l
′
j0,u

′
j0) × · · · × [l

′
jd−1
,u ′jd−1

) ⊆ Ci j . When Ti , d
or qr is large, Q ′ may also be large. In this case, we need
to search many small rectangles. To make it more efficient,
we merge consecutive small rectangles. IfCi j , ...,Ci j+n satisfy
i j+m − i j+m−1 = 1 and

⋃n
m=0Ci j+m is (path) connected, they

are merged to form a big cell, namely G̃i . As a result, qr can
be represented as

⋃Q
j=0 qr j with qr j = qr ∩ G̃ j = [lj0,uj0) ×

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan

· · · × [ljd−1,ujd−1). This operation can be performed easily in
a recursive manner.

Next, we calculate the mapped values of all qr j ’s vertices.
We usem(0)l ,m(0)u , · · · ,m(Q)l ,m(Q)u to denoteM

(
(l00, ..., l0d−1)

)
,

M
(
(u00, ...,u0d−1)

)
, · · · , M

(
(lQ0, ..., lQd−1)

)
and M

(
(uQ0, ...,

uQd−1)
)
, respectively. After calculating SP(m(0)l), SP(m

(0)
u),

· · · , SP(m(Q)l) and SP(m
(Q)
u), it is easy to select the pages

that overlap with qr using the corresponding local models.
Algorithm 2 accesses the keys that fall in the query rec-

tangle qr . In lines 6 and 11, we use different binary search
functions of the local models. This is becausemj

l andm
j
u may

be equal to some items in Lk (j)l
.PA or Lk (j)u

.PA. Moreover, it
is possible that the mapped values of different keys are equal.
In some extreme cases, these keys may be stored in differ-
ent pages, which means Lj .PM includes the shared mapped
value for some j. By using lbound and ubound in different
situations, it is guaranteed that the returned PaдeAddrs does
not miss any pages that overlap with qr .

Algorithm 2 RangeQuery
Input: qr : the query rectangle
Output: R: the keys falling in qr
1: decompose qr such that qr =

⋃Q
j=0 qr j with qr j = [lj0 ,uj0) ×

· · · × [ljd−1 ,ujd−1).
2: set PaдeAddrs to be an empty set
3: for j ← 0 to Q do
4: m

(j)
l ←M

(
(lj0 , .., ljd−1)

)
,m(j)u ←M

(
(uj0 , ..,ujd−1)

)
5: k

(j)
l ← ⌊SP(m

j
l)⌋, k

(j)
u ← ⌊SP(m

j
u)⌋

6: l ← Lk (j)l
.lbound(m

j
l)

7: for s ← l to Lk (j)l
.PA.size() − 1 do

8: PaдeAddrs .add(Lk (j)l
.PA[s])

9: for t ← k
(j)
l + 1 to k(j)u − 1 do

10: PaдeAddrs .addall(Lt .PA)

11: u ← Lk (j)u
.ubound(m

j
u)

12: for s ← 0 to u do
13: PaдeAddrs .add(Lk (j)u

.PA[s])

14: for each P ∈ PaдeAddrs do
15: add to R all the keys that fall in qr and are saved in P
16: return R

4.2 KNN Query
As we use a machine learning model SP to generate shards,
we do not know the analytical representation of the shards.
Thus, it is difficult to apply the traditional pruning strategies
for KNN query in R-trees to our LISA. Instead, we combine
a lattice regression model [12] and the range query (Algo-
rithm 2) to solve the KNN query problem.
Given a query point qknn = x = (x0, ..., xd−1) and a dis-

tance value δ > 0, let Q(x, e) ≜ [x0 − δ , x0 + δ) × · · · ×
[xd−1 − δ , xd−1 + δ) and B(x, δ) ≜ {p ∈ V | ∥x − p∥2 ≤ δ }.

Suppose x ′ ∈ V is the Kth nearest key to x in the data-
base. Let δ = ∥x ′ − x ∥2. We can create a query rectangle
qr = Q(x, δ + ϵ) where ϵ → 0. Clearly, the K nearest keys
to x are all in B(x, δ) and thus in qr , as shown in Fig. 6. If
we can estimate an appropriate distance bound δ for every
query point, the KNN query can be solved using the range
query.

δ0

qknn=(x0, x1)

δ
δ1

Figure 6: Example of aKNN
query conversion (K = 3)

It is still a regression
problem to estimate the
distance bounds that
can apply to arbitrary
query points. We can
directly apply a neu-
ral network regression
model. However, except
the coordinates, we do
not have other features
of the points in a dataset.
Also, the regressionmodel’s
size should not be too
large and training it can-
not cost too much time.
Besides, we hope the
model to have good interpretability. Thus, we use a lattice
regression model LR to estimate the distance bounds.
Firstly, n points from the space [0,X0) × · · · × [0,Xd−1)

are randomly sampled. For each point xi , we access its Kth
nearest key from the dataset. To do this, we can set a large
distance bound δi and perform a range query with rectangle
Q(xi , δi). After that, we select all keys falling in B(xi , δi). If
the number of selected keys is smaller thanK , we augment δi
until we can get theKth nearest keyx ′

i . Letyi = ∥x
′
i−xi ∥2+ϵ ,

the matrixX = [x0, ...,xn−1] and the vectory = [y0, ...,yn−1]

are the training input and output, respectively.
Consider a lattice consisting of m = τd nodes where τ

is the number of nodes along every dimension. Each node
consists of an input-output pair (ai ∈ Rd , bi ∈ R) and the
inputs {ai } form a grid cell that contains the input space
D within its convex hull. Let A be a d × m matrix A =
[a0, ...,am−1] and b be a vector b = [b0, . . . ,bm−1]. For any
x ∈ D, there are q = 2d nodes in the lattice that form a
shard. LR(x) is linearly interpolated from these nodes’ out-
puts, i.e.,LR(x) =

∑q−1
i=0 wi (x)bci (x), where c0(x), . . . , cq−1(x)

denote the indices of these nodes and wi (x) is the weight
corresponding to the ci th node. We restrict the sum of all
wi (x) to be 1 and each wi (x) is inversely proportional to
∥x−aci (x)∥2. Letw(x) be the sparsem×1 vector with c j (x)th
entryw j (x) for j = 1, . . . ,q − 1 and zeros elsewhere. For the
training inputs {x0, . . . ,xn−1}, letW be the m × n matrix
W = [w(x1), . . . ,w(xn−1)]. The nest lattice outputs b∗ that

LISA: A Learned Index Structure for Spatial Data SIGMOD’20, June 14–19, 2020, Portland, OR, USA

minimize total squared-ℓ2 loss with graph Laplacian regular-
ization [3] are

b∗ = arg min
b

1
n
(bW −y)(bW −y)⊺ + λbLb⊺ (9)

where L = 2
(
diag(1⊺E)−E

)
1⊺E1 and E is them ×m sparse lattice

adjacency matrix with Ei j = 1 for nodes directly adjacent to
one another only. The optimization problem above has the
closed form solution b∗ = 1

nyW
⊺(1

nWW ⊺ + λL)−1, where
1
nWW ⊺ + λL is a sparse positive definite matrix. Eq. (9) can
be solved using Cholesky algorithm [28].

Now the KNN query can be converted to a series of range
queries. Given a point qknn and K , we estimate the distance
bound as δ0 = LR(qknn). We access the keys in Q(qknn, δ0)

and filter out those keys outside B(qknn, δ0). If the number
of remaining keys is smaller than K , we augment δ0 and
issue a range query repeatedly until we get K nearest keys.
More specifically, suppose there are only K ′ < K keys in
B(qknn, δ0) and we want to augment δ0 to δ1. Here, we make
a reasonable assumption that the density of keys is almost
the same in a small area. Accordingly, the Lebesgue measure
of B(qknn, δ1) is K

K ′ times of that of B(qknn, δ1). Thus, it is

easy to infer that δ1 should equal to d
√

K
K ′δ0. For example, in

Fig. 6, there are only two keys in B(qknn, δ0). So, we enlarge
the query range by augmenting δ0 to δ1 =

√
3
2δ0. The new

query range Q(qknn, δ0) contains K = 3 keys falling in the
KNN region B(qknn, δ). Algorithm 3 gives the details of
LISA based KNN query processing.

Algorithm 3 KNNQuery
Input: x : a point in V K : a positive integer
Output: R: the K nearest keys to x
1: δ ← LR(x)
2: while true do
3: set R′ to be an empty list
4: qr ← Q(x, δ)
5: R̃ ← the keys falling in qr (Algorithm 2)
6: for each key k in R do
7: if k ∈ B(x, δ) then
8: add k to R′

9: if |R′ | < K then
10: η ← 2
11: if |R′ | > 0 then
12: η ← d

√
K
|R′ |

13: δ ← δ × η
14: else
15: break
16: sort R′ along the distance from every key to x
17: add the first K keys in R′ to R
18: return R

5 DATA UPDATE IN LISA
5.1 Insertion
It is easy to insert a key using LISA. Given a key k to be
inserted, we first calculate its mapped valueM(k). By calcu-
lating i = ⌊SP

(
M(k)

)
⌋, we can easily know which shard k

falls in. Next, the local model Li will find an existing page P
that contains k . If P is full, a new page P ′ will be allocated.
The keys stored in P and k will be evenly split into two parts
and stored in P and P ′, respectively. Algorithm 4 describes
key insertion in LISA.

Note that if P is not full, we simply append k to P without
sorting the keys in P . The sorting occurs only when P must
be split, because we only need to guarantee that for any
two consecutive pages P1 and P2, infM(P2) ≥ supM(P1).
Here ‘consecutive’ means the addresses of P1 and P2 are
consecutively stored in a Li .PA for some i .

Algorithm 4 Insertion
Input: k : the key to be inserted
1: m ←M(k), i ← ⌊SP(m)⌋
2: if Li .PA is empty then
3: allocate a new page P on disk and store k in P
4: append the address of P in Li .PA
5: else
6: u ← Li .ubound(m)
7: get the page P whose address is Li .PA[u]
8: if P is not full then
9: append k to P
10: else
11: load all keys in P into a list L and append r in L
12: sort L by the mapped values of keys in L

13: clear P and save the first Ω
2 + 1 keys in L to P

14: allocate a new page P ′ and save the last Ω
2 keys to P ′

15: insert the address of P ′ to Li .PA at index u + 1
16: m′ ←M(L[Ω2 + 1])
17: insertm′ to Li .PM at index u

5.2 Deletion
Similar to the insertion operation, to delete a given key k
with LISA, we first calculateM(k) and SP

(
M(k)

)
. Then,

we use the corresponding local model to find if there is a
page that contains k . If so, the key will be removed from
the page. A page is freed only when it does not store any
keys. To increase the utilization ratio of pages, we can merge
two consecutive pages overlapping with the same shard if
the numbers of keys stored in both pages are small. Suppose
P0 and P1 are two pages whose addresses are Li .PA[j] and
Li .PA[j + 1], respectively, for some i and j; n0 and n1 are
the numbers of keys stored in P0 and P1, respectively. If
n0 + n1 ≤ Ω, P0 and P1 can be merged. Meanwhile, Li .PA
and Li .PM need to be modified. The deletion algorithm
with merging operations is shown in Algorithm 5 where

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan

#Li .PA[j] denotes the number of keys stored in the page
whose address is Li .PA[j].
Algorithm 5 DeletionWithMerge
Input: k : the key to be deleted
1: m ←M(k), i ← ⌊SP(m)⌋
2: l ← Li .lbound(m), u ← Li .ubound(m)
3: pid ← −1, T ← Li .PA.size()
4: for j ← l to u do
5: get the page P whose address is Li .PA[j]
6: if P contains k then
7: delete k from P , pid ← j
8: if P is empty then
9: free P , erase Li .PA[j] and Li .RN [j]
10: if Li .PM .size() > 0 then
11: j ′ ← min

(
Li .PM .size() − 1,max(0, j − 1)

)
12: delete Li .PM’s j ′th item
13: return
14: l ← −1
15: if pid ≥ 0 and T > 1 then
16: if pid = 0 then
17: if #Li .PA[0] + #Li .PA[1] ≤ Ω then
18: l ← 0
19: else if pid = T − 1 then
20: if #Li .PA[T − 2] + #Li .PA[T − 1] ≤ Ω then
21: l ← T − 2
22: else
23: if #Li .PA[j − 1] + #Li .PA[j] ≤ Ω then
24: l ← j − 1
25: else if #Li .PA[j] + #Li .PA[j + 1] ≤ Ω then
26: l ← j
27: if l ≥ 0 then
28: get pages P0 and P1 whose addresses are Li .PA[l] and

Li .PA[l + 1], respectively
29: append all keys in P1 to P0
30: free P1 and erase Li .PA[l + 1]

6 EXPERIMENTS
In this section, we report on the experimental studies that
compare LISA with selected alternative methods.

6.1 Experimental Settings
Datasets. We use the following spatial datasets.
• imis-3months2 is collected by IMIS Hellas S.A., a com-

pany focusing on AIS technology and Public Information
Systems. The dataset includes 168,2420,595 records each hav-
ing a point captured in longitude and latitude. After duplicate
removal, 98,170,016 records remain.
• ImageNet is generated using the original images dataset3

in the ImageNet database [8]. Firstly, we resize all images to
the resolution of 450×600. For each resized image, we get the
3-channel values of all pixels indexed by (50i + 25, 50j + 25),
2http://chorochronos.datastories.org/?q=content/imis-3months
3http://image-net.org/download-images

where 0 ≤ i < 9 and 0 ≤ j < 12. For each pair of pixels
indexed by (50i0+25, 50j0+25) and (50i1+25, 50j1+25) satis-
fying 12(i0 + i1)+ j0 + j1 = 53, we concatenate the 3-channel
values of both pixels to form a 6-dimensional vector. Thus,
54 vectors are generated from an image. After collecting the
vectors from all resized pages and removing the duplicates,
72,891,949 vectors remain.
• Uniform (2d-6d) are 5 synthetic datasets in R2 to R6,

respectively. Every dataset contains 100M points that are
randomly sampled from a uniform distribution.
• Zipf (2d-6d) are 5 synthetic datasets in R2 to R6, respec-

tively. Every dataset contains 100M points that are randomly
sampled from a Zipf distribution.
Competitors. We compare LISA with Baseline (the base-
line method described in Section 2.2) and four existing meth-
ods:R-tree [13],R*-tree [4],KD-tree [5] and ZM [29]. The
node capacities of R-tree and R*-tree are set to be Ω. We use
the BFS (Breadth-first search) algorithm to traverse and num-
ber nodes in a KD-tree. When saving a KD-tree to disk pages,
the nodes numbering from i × Ω to (i + 1) × Ω − 1 are saved
in the same page. For ZM/Baseline, the keys in the initial
dataset are sorted according to their Z-order/mapped values.
Similarly, the keys whose Z-order/mapped values numbering
from i × Ω to (i + 1) × Ω − 1 are saved in the same page.
Evaluation Metrics. For each dataset, we randomly select
50% of the points as the initial dataset I . The other 50%
form the extra dataset E to be inserted into the databases.
From I ∪ E, 50% of the points are randomly selected as the
dataset D to be deleted. We conduct experiments on three
configurations. First, we build all five methods using I in
configuration Init. Next, we apply insertions of keys in E in
configuration AI. Finally, we delete keys in D from the data
in configuration AD. Four metrics on three configurations
are used to evaluate the performance of the methods: Size
indicates the disk storage space that a method consumes. IO
is the average number of pages to be loaded for a range/KNN
query. In order to have clear comparison in some cases, we
also use metrics IO Ratio and Size Ratio. They are the ratio
of a method’s cost to R-tree’s cost.
Parameter settings. Table 2 shows the parameter settings.
Every number in a key is of double type in our datasets.

Table 2: Parameter settings
Parameter Setting
Disk page size (PS) 4096 bytes
MBR size (MS) 8 × 2 × d = 16d bytes
Page address size (AS) 4 bytes
Ω PS

MS + AS
Ψ Ω
σ 100

When generating grid cells, the space V is partitioned
along every axis into the same number of parts, i.e.,T0 = T1 =

http://chorochronos.datastories.org/?q=content/imis-3months
http://image-net.org/download-images

LISA: A Learned Index Structure for Spatial Data SIGMOD’20, June 14–19, 2020, Portland, OR, USA

2 3 4 5 6
Uniform dimension

1
2
3
4
5
6
7
8

S
iz

e
(G

B
)

R-tree
R*-tree

KD-tree
ZM

Baseline
LISA

2 3 4 5 6
Uniform dimension

0.8

0.9

1.0

1.5

30.0

70.0

IO
 R

at
io

R-tree
R*-tree

KD-tree
ZM

Baseline
LISA

2 3 4 5 6
Zipf dimension

1
2
3
4
5
6
7
8

S
iz

e
(G

B
)

R-tree
R*-tree

KD-tree
ZM

Baseline
LISA

2 3 4 5 6
Zipf dimension

0.8

0.9

1.0

1.8

60.0

200.0

IO
 R

at
io

R-tree
R*-tree

KD-tree
ZM

Baseline
LISA

Figure 7: Performance on configuration Init

2 3 4 5 6
Uniform dimension

2
4
6
8

10
12
14
16

S
iz

e
(G

B
)

R-tree
R*-tree

KD-tree
LISA

2 3 4 5 6
Uniform dimension

0.8

0.9

1.0

1.8

30.0

IO
 R

at
io

R-tree
R*-tree

KD-tree
LISA

2 3 4 5 6
Zipf dimension

2
4
6
8

10
12
14
16

S
iz

e
(G

B
)

R-tree
R*-tree

KD-tree
LISA

2 3 4 5 6
Zipf dimension

0.8

0.9

1.0

1.8

70.0

IO
 R

at
io

R-tree
R*-tree

KD-tree
LISA

Figure 8: Performance on configuration AI

2 3 4 5 6
Uniform dimension

1
2
3
4
5
6
7
8

S
iz

e
(G

B
)

R-tree
R*-tree

KD-tree
LISA

2 3 4 5 6
Uniform dimension

0.7

0.8

0.9

1.0

1.1

1.6

35

IO
 R

at
io

R-tree
R*-tree

KD-tree
LISA

2 3 4 5 6
Zipf dimension

1
2
3
4
5
6
7
8

S
iz

e
(G

B
)

R-tree
R*-tree

KD-tree
LISA

2 3 4 5 6
Zipf dimension

0.7
0.8
0.9
1.0
1.1
1.9

60.0

IO
 R

at
io

R-tree
R*-tree

KD-tree
LISA

Figure 9: Performance on configuration AD

Init AI AD
ImageNet configurations

0

2

4

6

8

10

S
iz

e
(G

B
)

R-tree
R*-tree

LISA
LISA w M

KD-tree
ZM

Init AI AD
ImageNet configurations

1.0K
1.5K
2.0K
2.5K
3.0K
3.5K
4.0K
45K
50K
75K
80K
90K

100K

IO
 (#

Pa
ge

s)

R-tree
R*-tree

LISA
LISA w M

KD-tree
ZM

Init AI AD
Imis-3months configurations

0

1

2

3

4

5

S
iz

e
(G

B
)

R-tree
R*-tree

LISA
KD-tree

ZM

Init AI AD
Imis-3months configurations

1.0K
1.5K
2.0K
2.5K
3.0K
3.5K
4.0K
6.5K
7.0K

13.0K
13.5K

IO
 (#

Pa
ge

s)

R-tree
R*-tree

LISA
KD-tree

ZM

Figure 10: Performance on ImageNet (Left) and Imis-3month (Right) datasets

· · · = Td−1 = T . We set T to be 240, 90, 32, 18, 12 when d =
2, 3, 4, 5, 6, respectively. For a Zipf dataset with d > 2, we use
the modified strategy to partition the space (Section 3.1). For
each dataset, we randomly generate 10,000 query rectangles
and 10,000 points for KNN queries. In a query rectangle,
each side length is a random value in (0, 1

4∆i), where ∆i is
the distance between the min and max values on the ith axis.
In our experiments, the parameters of the mapping func-

tionM, the shard prediction function SP, all local models
and the lattice regression model LR are loaded into the
main memory before any query is executed. Suppose N is
the number of disk pages to store those parameters. Let H
be an integer value such that an R-tree’s top H highest lev-
els contain at least N internal nodes while H − 1 highest
levels contain less than N internal nodes. All nodes in the

top H levels are also loaded into the main memory before
any query is executed. Such N (or more) IOs are excluded
in the IO costs for subsequent queries in our measurements.
Table 3 compares the initial memory consumptions of LISA’s
parameters and R-tree’s pre-loaded internal nodes for every
Zipf/Uniform initial dataset. Apparently, LISA’s parameters
consume considerably less memory than R-tree.

Table 3: Initial memory consumption (MB)

Method d = 2 d = 3 d = 4 d = 5 d = 6

Uniform R-tree 24.2 48.1 79.7 122.2 174.9
LISA 9.1 12.4 14.2 17.8 25.5

Zipf R-tree 23.9 47.1 78.0 120.1 172.2
LISA 9.3 12.6 14.5 18.6 26.1

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan

6.2 Range Query Performance
Fig. 7, 8, 9 and 10 report the overall performance results
of LISA, R-tree, R*-tree, KD-tree, ZM and Baseline on range
query. We compare them on three configurations. On the
configuration Init, we build LISA and ZM using the dataset
I and insert I into R-tree, R*-tree and KD-tree. Then, the
dataset E is inserted into LISA using Algorithm 4 on the
configuration AI. Meanwhile, we insert E into the three trees.
Finally, on the configuration AD, we delete D from LISA and
the three trees.

Clearly, LISA achieves better performance on the IO con-
sumption of range queries. In most scenarios, LISA saves
more than 10-20% IO consumption compared to R-tree and
R*-tree. Also, LISA needs 5% to 10% less disk storage than
R-tree and R*-tree on average. LISA has clear advantages
over KD-tree, ZM and Baseline. Although the size of LISA is
larger than those of KD-tree, ZM and Baseline, they per-
form considerably less efficiently on range queries. In most
cases, they need to read 10 times more pages than LISA. For
simplicity, we exclude Baseline in the following experiments.
The key distribution of ‘ImageNet’ is complicated. To in-

vestigate if the modified partitioning strategy (Section 3.1)
works, we build two instances of LISA: one using the mod-
ified strategy (LISA w M) and the other using the original
strategy (LISA) for this dataset. As shown in the left part of
Fig. 10, LISA w M processes range queries fastest among the
six methods.

6.3 Effect of Dataset Cardinality
In order to investigate how the dataset cardinality affects
the performance of range queries, we design an experiment
as follows. For the dataset of 3d-Uniform and 3d-Zipf, we
randomly pick up 10M, 20M, 30M, 40M, 50M keys from the
initial dataset I and use them to build LISA and other meth-
ods. The comparative results are reported in Fig. 11.

Clearly, all five methods’ sizes increase almost linearly as
the dataset size increases. In terms of IO cost, KD-tree and
ZM still perform worst. The number of pages that LISA reads
is only about 85% to 90% of that of R-tree and R*-tree.

6.4 LISA Under Many Insertions
We also conduct experiments to analyze how LISA and the
other methods perform if we insert many new keys. We
first build R-tree, R*-tree, KD-tree and LISA using the 3d-
uniform and 3d-Zipf initial datasets. Then, we repeatedly
insert 50M keys into all methods and observe their sizes and
performance on range queries. Fig. 12 shows the performance
results.
All methods’ sizes increase linearly as more keys are in-

serted. As shown in Fig. 12, for 3d-Uniform dataset, the stor-
age cost of LISA is less than that of R-tree and R*-tree no

matter how many keys are inserted. R-tree or R*-tree per-
form slightly better than LISA only when we insert at least
150M 3d-Zipf keys, three times the size of the initial dataset.

Now considering the metric of IO, KD-tree still performs
much worse than the others. LISA has the biggest advantage
over R-tree and R*-tree if there is no data update operations.
Thus a static database will benefit greatly from LISA. When
keys are inserted, the IO consumption of LISA for range
queries increases. Still, LISA performs better than R-tree in
all scenarios. When the number of keys inserted is four times
the cardinality of the initial dataset, the advantage of LISA on
the metric of IO is not so clear. In this case, we can choose
to re-generate the cells and build the mapping functionM
and the shard prediction function SP. In our experiments,
generating cells and building M using the initial dataset
with a cardinality of 50M takes only about 10 minutes, and
training SP takes a few hours in a single machine. Consid-
ering the fact that LISA outperforms R-tree and R*-tree in
terms of storage consumption and IO cost, we are confident
that LISA has great potential in spatial data processing.

6.5 Response Time Comparison
We also compare LISA with the alternatives in terms of the
average response time, which equals CPU time + IO time,
on a single range query. We issue and process 10,000 range
queries using LISA and the other four methods on the ‘Ima-
geNet’ initial dataset. Table 4 shows the average CPU time
and the response time per query for the five methods. In
the computer used to run the experiments, recovering a disk
page takes about 15 µs.
Clearly, for all methods but KD-tree, CPU time is only a

small part in the response time. Compared to R-tree and R*-
tree, LISA has no advantage in terms of CPU time. However,
its IO cost is much smaller and thus it can get faster response
for range queries.

Table 4: Performance of response time

Method
3D Uniform ImageNet

CPU time
(ms)

Response
time (ms)

CPU time
(ms)

Response
time (ms)

R-tree 1.34 11.26 3.85 39.50
R*-tree 1.31 11.08 3.61 37.79
KD-tree 729 765.5 5,655 6,378
ZM 1.97 246.4 2.32 1,173
LISA 1.43 10.07 5.08 27.22

6.6 KNN Query Performance
We also compare our LISA with R-tree, R*-tree and KD-tree
on KNN query on the 3d-Zipf and 3d-Uniform datasets. We
randomly generate 10,000 points and vary K from 1 to 10.

LISA: A Learned Index Structure for Spatial Data SIGMOD’20, June 14–19, 2020, Portland, OR, USA

10M 20M 30M 40M 50M
#Initial dataset (Uniform)

0

1

2

3

4

5

S
iz

e
(G

B
)

R-tree
R*-tree

KD-tree
ZM

LISA

10M 20M 30M 40M 50M
#Initial dataset (Uniform)

0.8
0.9
1.0
3.0
4.0

20.0
40.0

IO
 R

at
io

R-tree
R*-tree

KD-tree
ZM

LISA

10M 20M 30M 40M 50M
#Initial dataset (Zipf)

0

1

2

3

4

5

S
iz

e
(G

B
)

R-tree
R*-tree

KD-tree
ZM

LISA

10M 20M 30M 40M 50M
#Initial dataset (Zipf)

0.8
0.9
1.0
6.0
8.0

70.0
130.0

IO
 R

at
io

R-tree
R*-tree

KD-tree
ZM

LISA

Figure 11: Performance with different dataset cardinalities

0 100 200 300 400
% of original cardinality (Uniform)

0.6

0.7

0.9

1.0

1.1

S
iz

e
R

at
io

R-tree
R*-tree

KD-tree
LISA

0 100 200 300 400
% of original cardinality (Uniform)

0.8

0.9

1.0

3.0

4.0

IO
 R

at
io

R-tree
R*-tree

KD-tree
LISA

0 100 200 300 400
% of original cardinality (Zipf)

0.6

0.7

0.9

1.0

1.1

S
iz

e
R

at
io

R-tree
R*-tree

KD-tree
LISA

0 100 200 300 400
% of original cardinality (Zipf)

0.8

0.9

1.0

5.0

8.0

IO
 R

at
io

R-tree
R*-tree

KD-tree
LISA

Figure 12: Performance after inserting different amounts of keys

We implement KD-tree’s KNN algorithm [10] and two R-
tree based KNN algorithms, BFS (best first search) [14] and
DFS (depth first search) [23]. Also, for each point and K , we
use R-tree’s BFS algorithm to calculate the distance between
Kth nearest keys to this point in advance. This distance is
the ideal distance bound for a KNN algorithm that converts
KNN queries into range queries. This method is named as
‘Ideal’. The IO cost and CPU time for KNN queries of the five
methods with varying K are reported in Fig. 13 and Table 5,
respectively. The performance gap between R-tree based
BFS/DFS and R*-tree based BFS/DFS is very small. Therefore,
we exclude R*-tree in Fig. 13 to make the comparison easy
to observe.

1 2 3 4 5 6 7 8 9 10
K (3d uniform)

0
5

10
15
20
25
30

IO
 (#

P
ag

es
)

LISA
Ideal

BFS
DFS

KD-tree

1 2 3 4 5 6 7 8 9 10
K (3d Zipf)

0
5

10
15
20
25
30

IO
 (#

P
ag

es
)

LISA
Ideal

BFS
DFS

KD-tree

Figure 13: IO cost on KNN query

Referring to Fig. 13, LISA and Ideal perform closely and
considerably better than others in terms of IO cost. Com-
pared to BFS, LISA and Ideal only need to load less than
80% pages for each KNN query. LISA and Ideal have clearer
advantages over DFS and KD-tree. Ideal achieves slightly
better performance than LISA with the lattice regression
model LR. The performance gap between LISA and Ideal

Table 5: CPU time of KNN tasks

Tasks Time

Building LR Sampling training data 165 s
LR training 22.15min

KNN with LR
Approximating
distance bound 0.002 ms

Range Query 0.32 ms

Algorithm on
single query
(K = 10)

LISA (A + R) 0.322 ms
R-tree BFS 1.05 ms
R-tree DFS 0.61 ms
KD-tree 0.68 ms

is negligible, which shows our LR is able to estimate a dis-
tance bound δ sufficiently close to the ideal distance bound.
It is also evident from Table 5 that building LR takes about
22 minutes only. Both steps of building LR need to be ex-
ecuted only once. Also, the average CPU time of LISA on
KNN queries is much smaller than that of the alternatives.

7 RELATEDWORK
Spatial indexes. Traditional spatial index structures gener-
ally fall into three categories. The first category partitions
the space into regions and then index those regions. Typi-
cal examples are KD-tree [5], quadtree [10] and octree [18].
A KD-tree is a special BSP tree (binary space partitioning
tree) [11] which organizes points in a K-dimensional space.
In a quadtree often used for 2D data, each internal node has
exactly four quadrants as children. As a three-dimensional
analog of quadtrees, an octree node has eight children.
The second category partitions the dataset into different

subsets and then indexes those subsets. Typical indexes are

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan

R-tree [13] and its variants such as R∗-tree [4], Hilbert R-
tree [15] and R+-tree [26]. Specifically, spatial data objects
are approximated using the minimum bounding rectangle
(MBR), multiple small MBRs are grouped together into a
larger MBR, and the process recurs until a single largest
MBR is formed. All MBRs correspond to R-tree nodes at dif-
ferent levels from root (the single largest MBR) level to the
leaf level (all object MBRs). Each node contains a number of
index entries each having an MBR and a pointer to its cor-
responding child node (at an internal level) or object (at the
leaf level). The parent-child relationship between nodes is
determined by that between a larger MBR and those smaller
MBRs that together form the larger one. R-tree and R*-tree
differ in how data updates (insertion and deletion) are han-
dled, whereas R+-tree splits an object into multiple parts and
MBRs in different leaves to avoid MBR overlap. As a general-
ization of R-tree, M-tree [6] features an overall structure and
construction process similar to the counterparts in R-tree.
However, unlike R-tree that uses MBRs to organize objects
and nodes, M-tree employs a distance metric and the triangle
inequality to organize objects into nodes and the nodes into
their parent nodes.
Range query processing via R-tree follows the filter-and-

refinement paradigm. The search starts from the root and
goes to a child node only if the child node’s MBR overlaps
with the query range. The search goes deeply in a recursive
manner, possibly covering multiple paths to the leaf level,
until all objects whose MBR overlaps with the query range
are fetched through the leaf nodes. Those nodes that are
not searched are filtered, whereas those fetched objects are
further checked (refined) to see if their concrete geometry
satisfies the query condition. KNN query processing via R-
tree takes the depth-first search (DFS) [23] or the best-first
search (BFS) [14]. DFS prunes unqualified tree nodes (and
data objects) using distance metrics between a query object
and MBRs. BFS prioritizes the search such that those tree
nodes that are closer to the query object are always visited
first.
In the third category, a multi-dimensional space is trans-

formed to 1-dimensional and the data objects in turn fall
into regions that are ordered sequentially. Subsequently, the
regions (thus the objects) are indexed by a B+-tree [7]. Query
processing requires the same transformation plus extra han-
dling to avoid false negatives in the results. As a typical
example, Microsoft SQL Server [1] uses B+-trees and Hilbert
space filling curves [25] to build its spatial indexes. In Mon-
goDB [2], spatial indexes are built with B+-trees and Geo-
Hash [20]. Moreover, UB-tree [22] is basically a B+-tree [9]
with records stored according to Z-order [25].

Learned indexes. Kraska et al. [17] propose the idea of
learned indexes, which applies machine learning models to

data access in databases. By capturing the relationship be-
tween search keys and their positions in the database through
CDFs, the learned index replaces the traditional B-tree with
a recursive model index (RMI) that consists of a number of
simple models staged into a hierarchy. Given a search key,
the RMI predicts where the corresponding data record is
positioned, and it guarantees that the record is found around
the predicted position within a known error bound. However,
the RMI only works for scalar values and falls short in spatial
data. The RMI idea is extended to index multi-dimensional
data [16] through a model that transforms multi-dimensional
data into 1-dimensional data. Such an idea does not perform
well because it heavily relies on the performance of the trans-
formation model which however is very hard to design for
arbitrary datasets. Mitzenmacher [19] proposes a variation
of learned Bloom filter [17] that features two layers of Bloom
filters surrounding the learned function. Wang et al. [29] pro-
pose a learned Z-order Model (ZM) index which combines
the Z-order space filling curve and the staged learning model
to process point and range queries. However, the ZM index
does not support data updates or KNN queries.

8 CONCLUSION AND FUTUREWORK
In this work, we propose LISA—a novel learned index struc-
ture for spatial data. LISA consists of four parts: 1) the repre-
sentation of grid cells, 2) a partial monotone mapping func-
tion M that maps spatial keys to 1-dimensional mapped
values, 3) a monotone shard prediction function SP that
predicts the shard id for a given mapped value and partitions
the mapped space into shards, and 4) local models that carry
out intra-shard operationswith respect to disk pages.We con-
duct extensive experiments using real and synthetic datasets.
The experimental results demonstrate that LISA outperforms
traditional spatial indexes in terms of storage and IO costs
for range and KNN queries. Moreover, LISA supports data
insertion and deletion operations efficiently.
This work opens several directions for future research

on learned indexes for spatial data. First, it is interesting to
design more efficientKNN query algorithms using LISA. Sec-
ond, it is relevant to investigate other possible forms for the
functions used in LISA. Third, it makes sense to study other
query types (e.g., spatial joins and closest pairs) using LISA.
Last but not least, it is interesting to investigate how LISA can
be adapted or modified to index massive trajectories.

ACKNOWLEDGMENTS
We thank all anonymous reviewers. This research is sup-
ported byNatural Science Foundation of China (No. 61925603,
61772460). Hua Lu’s work was conducted when he was em-
ployed at Aalborg University, Denmark. Hua Lu and Gang
Pan are corresponding authors.

LISA: A Learned Index Structure for Spatial Data SIGMOD’20, June 14–19, 2020, Portland, OR, USA

REFERENCES
[1] Microsoft SQL Server. https://www.microsoft.com/en-us/sql-server/

default.aspx. Accessed April 2020.
[2] MongoDB. https://www.mongodb.com/. Accessed April 2020.
[3] Rie Kubota Ando and Tong Zhang. 2006. Learning on Graph with

Laplacian Regularization. In NIPS. 25–32.
[4] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard

Seeger. 1990. The R*-Tree: An Efficient and Robust Access Method for
Points and Rectangles. In SIGMOD. 322–331.

[5] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used
for Associative Searching. Commun. ACM 18, 9 (1975), 509–517.

[6] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An
Efficient Access Method for Similarity Search in Metric Spaces. In
VLDB. 426–435.

[7] Douglas Comer. 1979. The Ubiquitous B-Tree. ACM Comput. Surv. 11,
2 (1979), 121–137.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li.
2009. ImageNet: A large-scale hierarchical image database. In CVPR.
248–255.

[9] Ramez Elmasri and Sham Navathe. 2017. Fundamentals of database
systems. Pearson.

[10] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad Trees: A Data
Structure for Retrieval on Composite Keys. Acta Inf. 4 (1974), 1–9.

[11] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. 1980. On visible
surface generation by a priori tree structures. In SIGGRAPH. 124–133.

[12] Eric K. Garcia and Maya R. Gupta. 2009. Lattice Regression. In NIPS.
594–602.

[13] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for
Spatial Searching. In SIGMOD. 47–57.

[14] Gísli R. Hjaltason andHanan Samet. 1999. Distance Browsing in Spatial
Databases. ACM Trans. Database Syst. 24, 2 (1999), 265–318.

[15] Ibrahim Kamel and Christos Faloutsos. 1994. Hilbert R-tree: An Im-
proved R-tree using Fractals. In VLDB. 500–509.

[16] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo,
Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan.
2019. SageDB: A Learned Database System. In CIDR.

[17] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis.
2018. The Case for Learned Index Structures. In SIGMOD. 489–504.

[18] Donald Meagher. 1982. Geometric modeling using octree encoding.
Computer Graphics and Image Processing 19, 2 (1982), 129–147.

[19] Michael Mitzenmacher. 2018. A Model for Learned Bloom Filters and
Optimizing by Sandwiching. In NeurIPS. 462–471.

[20] Gustavo Niemeyer. 2008. Geohash. Retrieved June 6 (2008), 2018.
[21] Michel Scholl Philippe Rigaux and Agnes Voisard. 2002. Spatial

Databases: With Application to GIS. Morgan Kaufmann Publishers,
Chapter 6 Spatial Access Methods.

[22] Frank Ramsak, VolkerMarkl, Robert Fenk, Martin Zirkel, Klaus Elhardt,
and Rudolf Bayer. 2000. Integrating the UB-Tree into a Database System
Kernel. In VLDB. 263–272.

[23] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent. 1995. Nearest
Neighbor Queries. In SIGMOD. 71–79.

[24] Halsey Lawrence Royden and Patrick Fitzpatrick. 1988. Real analysis.
Vol. 32. Macmillan New York.

[25] Hans Sagan. 2012. Space-filling curves. Springer Science & Business
Media.

[26] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. The
R+-Tree: A Dynamic Index for Multi-Dimensional Objects. In VLDB.
507–518.

[27] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis,
Quoc V. Le, Geoffrey E. Hinton, and Jeff Dean. 2017. Outrageously
Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.
In ICLR.

[28] Gilbert W Stewart. 1973. Introduction to matrix computations. Elsevier.
[29] Haixin Wang, Xiaoyi Fu, Jianliang Xu, and Hua Lu. 2019. Learned

Index for Spatial Queries. In MDM. 569–574.

https://www.microsoft.com/en-us/sql-server/default.aspx
https://www.microsoft.com/en-us/sql-server/default.aspx
https://www.mongodb.com/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Baseline Method
	2.3 LISA Overview

	3 Design and Training of LISA
	3.1 Generating Grid Cells
	3.2 Mapping Function M
	3.3 Shard Prediction Function SP
	3.4 Training of SP
	3.5 Local Models for Shards

	4 LISA-based Query Processing
	4.1 Range Query
	4.2 KNN Query

	5 Data Update in LISA
	5.1 Insertion
	5.2 Deletion

	6 Experiments
	6.1 Experimental Settings
	6.2 Range Query Performance
	6.3 Effect of Dataset Cardinality
	6.4 LISA Under Many Insertions
	6.5 Response Time Comparison
	6.6 KNN Query Performance

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

