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Abstract—Evolution strategies (ES) have recently raised at-
tention in solving challenging tasks with low computation costs
and high scalability. However, it is well-known that evolution
strategies reinforcement learning (RL) methods suffer from low
stability. Without careful consideration, ES methods are sensitive
to local optima and are unstable in learning. Therefore, there
is an urgent need for improving the stability of ES methods
in solving RL problems. In this paper, we propose a simple
yet efficient ES method to stabilize the learning. Specifically,
we propose a framework to incorporate the maximum entropy
reinforcement learning with evolution strategies and derive an
efficient entropy calculation method for linear policies. We
further present a practical algorithm called maximum entropy
evolution policy search based on the proposed framework, which
is efficient and stable for policy search in continuous control.
Our algorithm shows high stability across different random seeds
and can obtain comparable results in performance against some
existing derivative-free RL methods on several of the well-known
benchmark MuJoCo robotic control tasks.

Index Terms—reinforcement learning, evolution strategies, pol-
icy search

I. INTRODUCTION

In recent years, evolution strategies (ES) have raised at-
tention in solving challenging tasks of modern reinforcement
learning (RL) with low computation cost and high scalabil-
ity [1]–[3]. As a powerful alternative approach to the conven-
tional Markov Decision Process (MDP) based methods [4],
ES methods optimize the RL objective by regarding the
environment as a ”blackbox”, and use the perturbed policies
to explore the environment.

One popular version of ES methods [1] optimizes the
Gaussian smoothing of the RL objective function:

J(θ) = Eε∈N(0,I)[J(θ + σε)],

where J(θ) is the objective function which represents the ex-
pected total reward obtained from the environment, θ encodes
the policy, ε ∈ N(0, I) is a random variable drawn from
Gaussian distribution and σ > 0 is a hyperparameter denoting
the exploration range. The gradient of the objective function
w.r.t. θ can be estimated using N sampled ε:
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∇J(θ) =
1

σN

N∑
i=1

J(θ + σεi)εi

The policy can be optimized by performing gradient ascent
with the sampled data from the environments. However, one
major drawback for ES methods is the instability and high
variance in learning. The ES gradient estimator may introduce
high variance and without careful consideration, ES methods
are brittle to local optima and are fragile in learning [5].

In order to improve the stability of ES methods, one com-
mon way is to reduce the estimation variance in ES gradient
estimator. For example, control variables (also known as base-
line functions) are often used in ES-based methods [6]–[8].
Alternatively, general Monte Carlo methods such as antithetic
sampling are also popular adopted in blackbox optimization
methods [1], [2]. Those methods can substantially improve the
performance of ES. However, most of them are not stable and
easy to trap in the local optima when facing high dimensional,
complex tasks [9], [10]. New sampling methods such as Quasi
Monte Carlo methods and orthogonal sampling [11] can obtain
robust results, but need extra computation cost in generating
perturbation samples, which are not efficient when dealing
with high-dimensional tasks. Moreover, reusing the trajectories
generated by ES with off-policy deep reinforcement learn-
ing algorithms are also adopted in stable the ES algorithm.
Prominent examples such as evolution reinforcement learn-
ing (ERL) [12], CEM-RL [13] improve the stability of ES
with the cost of extra computation cost and low scalability.

Recently, several works based on maximum entropy rein-
forcement learning show that optimizing a non-deterministic
policy with maximum entropy regularizer can also improve
the stability and robustness of RL algorithms [14], [15]. The
involvement of maximum entropy RL can improve exploration
by introducing diverse behaviours to the policy and can
substantially improve the stability in learning. However, for
ES methods the maximum entropy reinforcement learning
framework is seldom used.

Inspired by those prominent works, in this paper we attempt
to incorporate evolution strategies with maximum entropy re-
inforcement learning. Specifically, we propose a maximum re-



inforcement learning framework for evolution strategies, which
enables maximum entropy reinforcement learning in evolution
strategies. We also derive an efficient entropy calculation
method for linear policies. In addition, we propose a practical
algorithm called maximum entropy evolution policy search,
which can retain the efficiency and scalability of ES methods.
We evaluate our method on the MuJoCo continuous control
benchmark environments [16]. The empirical results show
that our method is capable for dealing with high-dimensional
control tasks, and is very stable across different random seeds,
and can obtain competitive results in performance against
some of the existing methods.

To summarize, our contributions are as follows:
• We propose a maximum entropy reinforcement learning

framework, which additionally considers the maximum
entropy regularizer to ES methods.

• We present a practical policy search algorithm for con-
tinuous control based on the proposed framework, which
improves the performance and stability of the existing ES
methods.

II. RELATED WORKS

Here, we summarized some related works, including the
stability improvement in evolution strategies and maximum
entropy reinforcement learning.

A. Stability Improvement in Evolution Strategies

Existing methods to improve the stability of ES for policy
search can be divided into two categories:

Variance reduction of ES gradient estimator: ES gradient
estimator are always high variance in practice, which may
cause ES unstable and can easily breakdown when facing
a stochastic environments. Therefore, many existing works
have studied the variance reduction of ES gradient estimator.
One common approach is to use control variables (also refer
to baselines). The control variables can be either learned or
calculated during learning. Such method can be found in [6],
[7], [17] and [8]. In addition, methods for general purpose
Monte Carlo approach are also widely used, for example
antithetic sampling is very popular among the ES policy search
methods [1], [2], [7]. Although those methods can achieve
a considerable performance on RL tasks, most of them are
not stable and easy to trap in the local optima when facing
high dimensional tasks [9], [10]. Recently, [11] proposes
variance reduction through Quasi Monte Carlo sampling and
orthogonal sampling. [18] propose a sampling method based
on geometrically coupling. However, those methods involve
extra computation cost in generating samples, which are not
efficient when dealing with high-dimension control tasks.

Reuse of the ES generated samples: Several methods
attempt to increase the stability of ES by reusing the samples
generated by ES. The incorporation of off-policy methods
to re-utilize the samples generated by ES can improve the
stability of ES. For example, In [19], They propose POWER
algorithm, which uses expectation-maximization algorithm for

calculating the policy update. However, the involvement of im-
portance sampling may introduce high variance in estimation.
Evolution RL (ERL) [12] introduces a hybrid algorithm that
periodically inserts the deep deterministic policy gradient [20]
agent to the evolution optimization process, and improves the
stability and efficiency in learning and exploration. The goal
exploration process-policy gradient (GEP-PG) [21] adopts a
goal exploration process to fill the replay buffer and then
uses DDPG [20] to learn the policies. [5] proposes robust
blackbox optimization(RBO), which uses off-policy samples
to improve the stability of ES and generalize the orthogonal
sampling. In addition, the CEM-RL [13] combines TD3 to ES
methods to relearn the samples. Their work, the cross-entropy
method (CEM) and gradient-based method DDPG/TD3 [22]
are combined. Their result shows that stability of ES can be
improved. In [23], they combine ES with TRPO [24] to make
monotonic update the policies.

To summarize, although those sample-based methods can
improve the data efficiency and stability of ES, they are always
computation costly in gradient computing and not easy to
parallelize.

B. Maximum Entropy Reinforcement Learning

While the conventional RL optimizes the policies to max-
imize the expected return, maximum entropy RL aims at
maximizing both the expected return and the expected entropy
of the policy [25]. The maximum entropy RL can provide a
substantial improvement of exploration and robustness com-
paring to conventional RL [15], [25]. Such a framework has
been used in inverse RL [26], optimal control [27], [28], and
guided policy search [29], [30].

Recently, several methods use deep RL combined with max-
imum entropy RL. [14] proposes soft Q-learning algorithms
that uses a stochastic sampling network to perform exploration,
and can cope with arbitrary policy distributions. Subsequently,
the Soft actor-critic [15] adopts maximum entropy RL in
actor-critic algorithms. In addition, [31] proposes Trust-PCL
to utilize the entropy regularizer in TRPO [24] and improves
the stability and robustness of TRPO.

Although the state-of-the-art maximum entropy RL methods
achieve prominent results with high stability, they have not
combined with ES framework, since ES always optimize a
deterministic policy and there is no sense for measuring the
entropy of a deterministic policy.

III. PRELIMINARY

We first give some basic notations and preliminaries on
evolution methods for RL and maximum entropy RL.

A. Notations

A reinforcement learning problem can be formulated as a
Markovian decision process (MDP) [4]: (S,A, γ,R, P ), where
S is the state space, A is the action space, γ ∈ [0, 1] is the
discount factor, R is the reward function: R : S ×A→ R, P
is the transition probability denotes the probability density of
the next state st+1 ∈ S when executing action a ∈ A under



observation st ∈ S: S × S × A → [0, 1]. A policy π is a
probability distribution that describes the agent action a ∈ A
under state s ∈ S: π(a|s) : S×A→ [0, 1]. We use ρπ to refer
to the state distributions under the policy π.

The return of policy π of one rollout is defined as the total
discount reward achieved when executing π in the environ-
ment:

G(π) =

T∑
i=0

γiR(st, at) (1)

The goal of RL is to find an optimal policy that maximizes
the expected discounted return:

J(π) = E(st,at)∼ρπG(π) (2)

In this paper, we will focus on linear policies, where the
action a ∈ Rn×1 can be calculated through a parameterized
policy matrix θ ∈ Rm×n under the observation s ∈ Rm×1:

a = θT · s (3)

B. Evolution Strategies for Reinforcement Learning

Evolution strategies optimize the policy by regarding the
environment as a blackbox. With Gaussian smoothing [11],
the RL optimization objective can be rewrite as:

Jσ(θ) = Eε∼N (0,I)[J(θ + σε)] (4)

where σ is hyperparameter about exploration range, and
ε ∼ N (0, I) is a Gaussian random variable. The gradient of
parameter θ of policy can be calculated by:

∇J(θ) =
1

σ
Eε∼N (0,I)[J(θ + σε)] (5)

The above gradient estimator can be estimated using a
Monte Carlo estimator by sampling N samples from a stan-
dard normal distribution:

∇J(θ) =
1

σN

N∑
i=1

G(πθ+σεi)εi (6)

Additionally, G(π) can be also evaluated by executing
policy π in the environment. We refer the gradient estimator
in 6 as vanilla ES estimator. The policy can be then optimized
by performing gradient ascent with estimated gradient:

Usually, antithetic sampling is used to reduce variance:

∇J(θ) =
1

2σN

N∑
i=1

[G(πθ+σεi)−G(πθ−σεi)]εi (7)

With the ES gradient estimator, the policy can be optimized
through executing the perturbed policies into the environment.

C. Maximum Entropy Reinforcement Learning

In the maximum entropy RL, an entropy regularizer is
augmented to the standard RL objective function:

Je(π) = Est∼ρπ [

T∑
i=0

γiR(st, at) + αH(π(·|st)] (8)

where α is a temperature parameter denoting the relative
importance of the entropy regularizer with regard to the
reward [26], and H(π(·|st)) is the entropy over policy π under
observation st. The temperature parameter α controls the
stochasticity of the optimal policy [15]. Although in principle
1/α can be folded into the reward function [14], for convenient
we will treat α as a fixed hyper-parameter in learning.

Note that the maximum entropy RL framework can only
used for non-deterministic polices since the entropy for deter-
ministic policies is always 0. The involvement of an entropy
regularizer in the optimization objective can incentive the
policy to explore more widely while giving up on clearly
unpromising choices [15]. The non-deterministic policy can
also capture the multiple modes of near-optimal behaviours,
which can reduce the difficulty in finding one of them.
Moreover, prior work has observed the stability of learning
can be substantially improved by the entropy regularizer [14],
[15]. While the prior work of maximum entropy RL focuses
on derivative-based methods, we here focus on derivative-
free method using a maximum entropy learning framework,
especially for the evolution strategies.

IV. METHOD

In this section we introduce our method in detail. We
will first describe the overall framework, give derivations of
entropy calculation, and introduce maximum entropy evolution
policy search algorithm in detail.

A. Overall Framework

As illustrated above, the conventional ES for RL optimizes
a deterministic policy during learning, which is not able
to apply maximum entropy RL framework. To address this
issue, in this work we explore to optimize a non-deterministic
policy with parameters under Gaussian distribution. For each
iteration, Gaussian random variables are generated, and are
then used to generate non-deterministic policies. For each non-
deterministic policies, we sample again using its parameter
distribution to estimate its expected return with the maximum
entropy regularizer, and then update the policy parameter using
the ES gradient estimator. The overall framework is shown in
Fig. 1. We will describe the optimization of non-deterministic
policy, and derive the entropy calculation in the following part.

1) Optimizing a Non-deterministic Policy Using Evolution
Strategies: We seek to optimize a non-deterministic policy
whose parameters are under Gaussian distribution:

π̂(θ) : θ ∼ N (µ, v2I) (9)

Here µ is the mean value matrix of parameters, v is the
standard deviation that describes the degree of determinacy



Sample N random 
variables ϵi ∼ N(0,I )ϵi ∼ N(0,I )

Generate N non-
deterministic Policies  

̂πi(θ ) : θ ∼ N(μ + σ ϵi, v2I )̂πi(θ ) : θ ∼ N(μ + σ ϵi, v2I ) 

Sample M policy 
Parameters 

θj ∼ N(μ + ϵiσ, v2I )θj ∼ N(μ + ϵiσ, v2I ) 

Update policy parameter μμ 
using ES gradient 

estimator

Evaluate the return of non-
deterministic policy with 

maximum entropy 
regularizer 

Evaluate the total 
return  G ( ̂πi(θj))G ( ̂πi(θj))  

Initialize policy 
parameter μμ

G ( ̂πi(θ )) = 1
M

M

∑
j=1

[G ( ̂πi(θj)) + H( ̂πi(θj))]G ( ̂πi(θ )) = 1
M

M

∑
j=1

[G ( ̂πi(θj)) + H( ̂πi(θj))]

Run the policy in 
the environment

Evaluate the total 
entropy H( ̂πi(θj))H( ̂πi(θj))

Fig. 1. Overall framework. Comparing to the conventional ES methods, our
framework optimize a non-deterministic policies with Gaussian distribution,
together with the maximum entropy regularizer. For each time step of
evaluation, we also evaluate the entropy of policies when encountering an
observation.

of policy π and I is the identity matrix. If v is close to 0,
then the policy is become more deterministic, and vice versa.
Similarly, the goal of learning a non-deterministic policy is
to maximize the expected discounted return, as described in
equation 2.

Based on equation 1, the return of policy π̂ can be estimated
using Monte Carlo sampling: we can sample M deterministic
policies based on the parameter distribution of policy π̂, and
then evaluate them into the environments:

G(π̂) =
1

M

M∑
j=1

T∑
t=1

γiR(st, at|πj) (10)

If we treat the policy variance v as a hyperparameter, then
based on equation 6, the gradient of parameter µ can be
estimate using the ES gradient estimator as:

∇J(µ) =
1

Nσ

N∑
i=1

G(π̂(µ+ σεi))εi (11)

Note that π̂(µ+σεi) indicates that the parameters in policy
π̂ is under Gaussian distribution:

π̂(θ) : θ ∼ N (µ+ δεi, v
2I) (12)

The antithetic sampling technique can also be used using
the following equation:

∇J(µ) =
1

2Nσ

N∑
i=1

[G(π̂(µ+ σεi))−G(π̂(µ− σεi))]εi (13)

Hence, we have derived a ES optimization method for
non-deterministic policies. The involving of non-deterministic
policies can encourage the policy to explore more, as the
sampled policies are different at each gradient update step.

2) Efficient Entropy Calculation for Linear Policies: The
involving of non-deterministic policies make it possible for
evaluation of entropy during learning. To calculate the entropy
of policies, we need first analyze the probability distribution of
actions from a non-deterministic policy π̂. As the parameters
in policy π̂ is under Gaussian distribution and we use linear
policies, the output action is a linear transformation of π̂.
Based on the property of Gaussian distribution, the probability
distribution of output action of policy π̂ under some state s is
also a multivariate Gaussian distribution [32]:

π̂(a|s) ∼ N ((µ+ δεi)
T · s, v2 · I · sT · s) (14)

The entropy of the policy can be calculated using the
following theorem:

Theorem: Given the multivariate Gaussian policy π̂, where
the parameters in π̂(θ) ∼ N (µ, v2 · I), the entropy of policy
π̂ under state s H(π̂(·|s)) is:

H(π̂(·|s)) =
n

2
+
n

2
log(2Π) +

1

2
log |v2 · I · sT · s| (15)

where Π is the Archimedes’ constant.
Proof: Denoting f(a) as the probability density function of

output action under policy π̂(θ) : θ ∼ N (µ + δεi, v
2 · I), the

entropy of stochastic policy π̂ under state s can be calculated
through a multiple-integral over all the state dimensions:

H(π̂(·|s)) = −
∫ +∞

−∞
...

∫ +∞

−∞︸ ︷︷ ︸
n

f(a) log f(a)da|s (16)

According to the theory of differential entropy of multivari-
ate Gaussian distribution [31], the result of the above multiple-
integral only depends on the covariance matrix of the output
action distribution:

H(π̂(·|s)) =
n

2
+
n

2
log(2Π) +

1

2
log |v2 · I · sT · s| (17)

�
The above equation states that the entropy of a Gaussian

policy can be calculated directly. For each rollout of ES, the
total entropy of policy H(π̂(θ)) can be calculated as:

H(π̂(θ)) =

T∑
i=0

H(π̂(·|st, θ)) (18)

which is determined by the states the agent encountered.
Hence, we thus obtain an efficient entropy calculation method
of the policies generated by ES.

Ignoring the constant terms, we can rewrite the return in
Equation 10 with a maximum entropy regularizer:

Ge(π̂) =
1

M

M∑
j=1

T∑
t=1

γi[R(st, at|πj) + α log |v2 · I · sTt · st|]

(19)
We can then use the sampling technique to estimate the gra-

dient of parameters in policy π̂ using the ES gradient estimator



in Equation 6 and 7. So far we have derived the maximum
entropy reinforcement learning method using ES, we name it
Maximum Entropy Evolution Policy Search (MEPS).

B. Practical Algorithm

Since the ES gradient estimator is always high variance, in
practice we need to use some techniques to reduce the variance
in learning. Similar to some existing ES methods for policy
search [1], [2], [7], We use several techniques to reduce the
variance and increase the stability in learning:

1) State Normalization. State normalization is important to
treat each state features with equal influence and can
also increase the stability during learning. We here use
the z-score normalization for the state encountered.

2) Antithetic sampling and using the top directions.. Anti-
thetic sampling can improve the robustness in ES gradi-
ent estimation [7]. In addition, using the top directions of
antithetic sampling can reduce noise in gradient update
as discussed in [2].

3) Reward Scaling. Reward scaling can reduce the variance
in antithetic sampling and make the step size less sensi-
tive to the gradient update of the policy parameters [2].
In this paper we scale the total reward received by
dividing its standard deviation.

Finally, the overall algorithm of MEPS is illustrated in
algorithm 1. The MEPS is as efficient as the the current ES
methods such as [1] and [2], as we just need to calculate
entropy based on the states during each rollouts. Our method
is simple and efficient comparing to the orthogonal sampling
methods [11], and can also researve the high scalability of ES.

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments to evaluate the
performance of maximum entropy evolution policy search to
answer the following questions:

1) Can maximum entropy evolution policy search improve
the performance and stability against the existing meth-
ods on the typical RL benchmark environments?

2) How sensitive is MEPS to the new involved hyperpa-
rameters?

To answer the above questions, we evaluate our method
against some existing methods on the well-known benchmark
MuJoCo robotic control tasks [16]. Specifically, we use four
tasks: HalfCheetah-v2, Hopper-v2, Swimmer-v2 and Ant-v2.
The details of the experiments can be found in Appendices
part. The evaluation is performed on the OpenAI Gym [33].
The detail of experiment results is described below.

A. Performance Evaluation

We evaluate the performance of MEPS against Augment
Random Search (ARS), Vanilla ES (VES) and CMA-ES on the
MuJoCo continuous control tasks. We run each method for 5
times with fixed random seeds and measure score of total aver-
age reward achieved during learning. The score is estimated by
running the policy without exploration noise after a gradient
update step. To make a fair comparison, for each running the 3

Algorithm 1 MEPS: Maximum Entropy Evolution Policy
Search

1: Input: learning rate lr, number of directions sampled
per iteration N , exploration range σ, number of top-
performing directions to use b(b ≤ N ), number of sam-
pling M in evaluate stochastic policies, policy varince v
and temperature parameter α.

2: Initialize: µ0 = 0 ∈ Rm×n, j = 0
3: while ending condition not satisfied do
4: Sample ε1, ε2, ..., εN with i.i.d. standard normal entries.
5: Generate stochastic policies using the sampled vari-

ables: {
π̂i,+(θ)|j ∼ N (µj + σεi, v

2I)
π̂i,−(θ)|j ∼ N (µj − σεi, v2I)

6: for π̂ ∈ {π̂i,+|j , π̂i,−|j} do
7: Sample M parameters according to the policy distri-

bution of π̂.
8: Generate M rollouts with sampled policy parameters.

Note that the state need to be normalized before
calculating action.

9: Evaluate Ge(π̂) based on Equation 10.
10: end for
11: Sort the directions by max {Ge(π̂i,+|j), Ge(π̂i,−|j)}

and using the top b corresponding ε for update. De-
noting ε(l) as the l-th largest direction.

12: Update the policy via:

µj+1 ← µj +
lr

bσδR

b∑
l=1

[Ge(π̂l,+|j)−Ge(π̂l,−|j)]ε(l)

where δR is the standard deviation of the rewards
collected of the rollouts.

13: j ← j + 1
14: end while

methods share the sample random seed. In addition, the results
are also smoothed with a right-centered moving window of
50 consecutive epochs. The hyperparameters of our method,
vanilla ES and CMA-ES is described in the Appendices, while
the hyperparameters of ARS we used is the same as ARS-vt
in [2].

The learning curves is shown in Figure 2. The solid lines
represent the mean total reward obtained under 5 indepen-
dent runs and the shaded regions represents the variance.
The experiment results show that our method is stable over
different random seeds than the baseline methods ARS, VES.
Specifically, in HalfCheetah-v2, Hopper-v2 and Ant-v2 the
MEPS outperforms the baseline methods by obtaining more
rewards per episode. The CMA-ES method outperforms the
other methods on the Swimmer-v2. However, it performs
poorly on high-dimension tasks such as Ant-v2 (888 control
dimension), HalfCheetah-v2 (106 control dimension), as is
reported in [24]. In addition, in Swimmer-v2, the original ARS
is not stable after convergence, in contrast our method is very
stable after convergence. We can empirically conclude that



(a) Halfcheetah-v2 (b) Hopper-v2

(c) Swimmer-v2 (d) Ant-v2

Fig. 2. Learning curves on the MuJoCo [16] tasks of maximum entropy evolution policy search (MEPS), augment random search (ARS), vanilla evolution
stategies (VES) and Covariance Matrix Adaption (CMA-ES). The x-axis denotes the number of rollouts during the learning and y-axis represents the total
reward achieved. The solid lines represent the mean total reward obtained under 5 independent runs and the shaded regions represents the variance. Our
method achieves a stable and comparable results across different random seeds than the baseline methods.

our method can improve the performance and robustness of
evolution strategies.

B. Ablation Study

In this part, we study the sensitivity of two hyperparameters:
temperature parameter α and policy variance of stochastic
policies v. To show the sensitivity of the new involved hy-
perparameters, we evaluate the effect of the new involved hy-
perparameters on HalfCheetah-v2 environment with five fixed
random seeds. We will explain the effect of each parameters
below:

Temperature parameter α. Theoretically, the optimiza-
tion objective with large α makes the learned policy more
stochastic, while the small α makes the learned policy more
deterministic [14]. In addition, The mixture learning objective
in 8 also shows that the percentage of the entropy influence the
optimization of total return. Our experiment results confirm it
in Figure 3(a). We found that when α = 1, the total return
decrease and also unstable to the random seeds, while the
performance of α = 0.001 is similar to ARS. When α = 0, the
algorithm runs without the maximum entropy regularizer, and

the performance is also similar to ARS. In practice a suitable
α need to be tuned to obtain both performance and stability.

Policy variance v of stochastic policies. The variance
of output action is directly related to the policy variance v
as described in Equation 12. Therefore the policy variance
parameter v controls the exploration of the action for a
stochastic policy. The larger policy variance may cause the
policy unstable, as the variance of output action is larger, and
may need more rollouts to evaluate its return in Equation 10.
As is shown in Figure 3(b), the performance is quite sensitive
to the parameter v, as larger v leads the policy hard to
optimize, even diverged at v = 1. Therefore, in practice we
suggest to fixed a smaller v and tune α subsequently.

VI. CONCLUSION

We have proposed a maximum entropy learning framework
for evolution strategies. In addition, we also derive an efficient
algorithm called maximum entropy evolution policy search
for continuous control. The MEPS algorithm maintains the
property of ES with high efficiency, low computation cost
and easy to parallelize. Our experimental results show it can
achieve stable and comparable performance over evolution



(a) Temperature parameter α

(b) Policy variance v

Fig. 3. Ablation Studies on HalfCheetah-v2 environment. The upper figure
shows the effect of temperature parameter α and the lower figure shows the
effect of policy variance v.

strategies on the benchmark MuJoCo continuous control tasks,
and is capable for high-dimensional tasks. In addition, we also
provide ablation studies of the new involved hyperparameters.
By selecting a suitable temperature parameter the learning of
evolution strategies for continuous control can be improved.
One of the drawbacks of our work is the policies used
for learning are constrained to linear policies. Although our
method is only capable for continuous control tasks, in the
future we will study how to incorporate ES with maximum
entropy reinforcement learning for discrete tasks.
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APPENDIX

A. Environment Details

Table I shows the state dimensions and action dimensions
of the tasks used in the experiments, here is a brief description
for each task:

• HalfCheetah-v2: Agent controls a cheetah-like body to
run forward as quickly as possible.

• Ant-v2: Agent controls a 4-leg ant to move forward as
quickly as possible.

• Hopper-v2: Agent controls a monoped to keep it from
falling.

• Swimmer-v2: Agent controls a snake-like robot to swim
forward as fast as possible.

We use the OpenAI Gym platform 1 [33] for implementa-
tion.

Task State Dimensions Action Dimensions
HalfCheetah-v2 17 6
Hopper-v2 11 3
Ant-v2 111 8
Swimmer-v2 8 2

TABLE I
THE DETAILS OF THE MUJOCO TASKS USED IN THE EXPERIMENTS.

B. Hyperparameters

The hyperparameters of MEPS used in Figure 2 are illus-
trated in Table II. The discount factor γ is set to 1 for all the
methods. For the hyperparameters in ARS, we use the same
as in [2].

The hyperparameters for vanilla ES is shown in table III .
The hyperparameters for CMA-ES2 is shown in table IV.
For the parameters in ablation study, we keep the same

parameters in II while only vary the selected parameters.
To further improve the efficiency of online learning, the nor-

malization of states in the experiment we use is implemented
in a online approach, which can be also found in [2].
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