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ABSTRACT

This paper presents a novel adversarial scheme to perform
image denoising for the tasks of rain streak removal and re-
flection removal. Similar to several previous works, the pro-
posed method first estimates a prior image and then uses it to
guide the inference of noise-free image. The novelty of our
approach is to jointly learn the gradient and noise-free image
based on an adversarial scheme. More specifically, we use the
gradient map as the prior image. The inferred noise-free im-
age guided by an estimated gradient is regarded as a negative
sample, while the noise-free image guided by the ground truth
of a gradient is taken as a positive sample. With the anchor de-
fined by the ground truth of noise-free image, we play a min-
max game to jointly train two optimizers for the estimation of
the gradient and the inference of noise-free images. We show
that both prior image and noise-free image can be accurately
obtained under this adversarial scheme. Our state-of-the-art
performance achieved on two public benchmark datasets val-
idate the effectiveness of our approach.

Index Terms— Rain Streak Removal, Reflection Re-
moval, Adversarial Learning, Deep Learning

1. INTRODUCTION

In recent years, deep convolutional neural networks (CNNs)
have achieved unprecedented success in the problem of im-
age denoising, e.g., dehazing [1], rain drops removal [2], rain
streak removal [3], and reflection removal [4]. Rain streak re-
moval and reflection removal are problems which attempt to
recover or infer rain- or reflection-free images from rain- or
reflection-contaminated images.

Inferring a noise-free image from a noise-contaminated
image mixed by it and a noisy image is an ill-posed problem
since both noise-free image and noise image are unknown.
To make it tractable, several assumptions have been made in
the literature. Traditional methods make explicit assumptions
based on the priors of images, such as prior on noise-free im-
ages (e.g., sparsity [5], gradient [6]), or prior on noise images
(e.g., low-rank [7], ghosting effects [8]). However, these as-
sumptions may not always be held in practice due to the com-
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plexity of actual situations [9]. And methods based on them
tend to provide over-smooth results [10].

In order to avoid limitations above, learning based meth-
ods try to learn such priors from data. A recent study has
shown that directly optimizing the regression between noise-
contaminated images and noise-free images can bring the
problem of underfitting [9]. Therefore, researchers propose
to use a prior image [9] to guide the inference of noise-
free images. The process of denoising is then composed by
concatenating the stages of estimating the prior image and
inferring the noise-free image. The definition of such prior
image is always motivated by traditional methods, e.g., gra-
dient map [11, 12], detail map [9], rain streak or mask [3],
levels of rain streak [10], etc. However, there is no universal
strategy to jointly optimize the prior image and the noise-free
image. Almost all of these works above [9, 3, 10, 12, 11]
elaborately design specialized strategy for their prior im-
ages, leading to the difficulty of improving or modifying the
network structures.

To this end, this paper presents a novel method which
jointly optimizes the prior image and the noise-free image
in an adversarial scheme. We adopt deep neural networks
to jointly optimize the prior image estimator and the sample
constructor. Benefitting from the independence between these
two optimizers, their design can be more flexible. That is, the
architectures of these two networks can be adjusted separately
to meet different requirements, e.g., modifying inputs or out-
puts of neural networks or simply making them deeper.

Our major contributions are in two folds: 1) we propose
denoising adversarial networks in which accurate prior im-
ages and noise-free images can be acquired simultaneously,
2) we apply our approach to the problems of rain streak re-
moval and reflection removal and achieve the state-of-the-art
performance on public benchmark datasets.

2. THE PROPOSED METHOD

In this section, we first introduce the key idea of our approach
and show that it can simultaneously achieve optimal solutions
for both the prior image and the noise-free image in Sec-
tion 2.1. We then detail our implementation and summarize
our algorithm in Section 2.2.



Fig. 1. The framework of the proposed approach is illustrated through the task of rain streak removal as an example (top).
Boxes in silver represent two deep neural networks sharing the same architecture which is displayed at the bottom.

2.1. An Adversarial Scheme for Image Denoising

The framework of our adversarial scheme is shown in Fig-
ure 1 (top). We define the ground truth of a noise-free im-
age as an anchor, the inferred sample guided by a fake or
estimated prior image as a negative sample, and the inferred
sample guided by a real or ground truth of prior image as pos-
itive sample. We use g and h to represent the neural networks
of the prior image estimator and the sample constructor, M,
B, and G to represent a given noise-contaminated image, a
noise-free image, and the prior image or gradient map of B,
respectively. Our method optimizes g and h by the following
objective function,

min
g

max
h

d(Ba,Bn)− d(Ba,Bp), s.t., d(Ba,Bp) < δ,

Bp = h(M,Gr),Bn = h(M,Gf ) = h(M, g(M)),

(1)

where subscripts ‘a’, ‘p’, ‘n’, ‘r’, and ‘f’ are the abbreviation
of ‘anchor’, ‘positive’, ‘negative’, ’real’, and ‘fake’ respec-
tively, δ is a small scalar quantity, d is a pre-defined metric to
measure the difference between two images.
Triplet loss. In the stage of optimizing h, our approach max-
imums the distance between an anchor and a negative sam-
ple, while it minimizes that between the anchor and a positive
sample (top, Figure 1). This idea is consistent with triplet
loss, which has been proven to be effective on the problem
of recognition [13]. Note that our approach contains an extra
stage (the optimization of g) as compared to triplet loss.

Min-max optimization. The min-max game in Equation (1)
attempts to find an optimal h to distinguish whether an in-
ferred sample is guided by a fake gradient or a real gradient.
At the same time, it optimizes an optimal g to fool the h. This
idea is consistent with the actor-critic algorithms [14] (critic
h and actor g in our case), which has been proven to be ef-
fective on reinforcement learning. Introducing the Triangle
Inequality, we have

d(Bn,Bp) = max
h

d(Ba,Bn)− d(Ba,Bp). (2)

According to the inequality above, the min-max optimization
in (1) is essentially to minimize the difference between two
inferred images guided by a fake and a real gradient map,

min
g
d(Bn,Bp) = min

g
d(h(M,Gr), h(M,Gf )). (3)

That is, optimizer g tries to estimate a fake gradient to be sim-
ilar as to the real gradient under the metric determined by an
optimal h and a pre-defined d. Once the gradient is accurately
estimated, the constraint in (1) ensures the accuracy of the in-
ferred sample guided by it.
Differences from GAN. Both our approach and the Genera-
tive adversarial nets share the similar spirit of actor-critic op-
timizations. There are at least two key differences between
our approach and GAN. On the application aspect, GAN is
employed to generate data and focuses on the output of the
actor, while our approach is to remove noise and focuses on
the outputs of both actor and critic. On the theoretical aspect,



Algorithm 1: Minibatch stochastic gradient descent
training of denoising adversarial networks. The
number of steps to apply to the h, k, is a hyperpa-
rameter. We used k = 5 in our implementation.

1: for number of training iterations do
2: for k steps do
3: Sample minibatch of m data pairs from dataset.

{(M(1),B
(1)
a ), ..., (M(m),B

(m)
a )}.

4: Update h by ascending its stochastic gradient:
∇θh 1

m

∑m
i=1[d(Ba,Bn)− αd(Ba,Bp)].

5: end for
6: Update g by descending its stochastic gradient:

∇θg 1
m

∑m
i=1 d(Ba,Bn).

7: end for

GAN is to minimize the KL-divergence between the distri-
butions of generated data and real data. While our approach,
as introduced above, is to minimize the difference between a
fake and a real gradient with a given metric, i.e., d (to be intro-
duced below). And such a metric is determined by the critic
aim of obtaining an accurate inference of noise-free image.

2.2. Implementation and Algorithm

Constraint. We loose the constraint d(Ba,Bp) < δ in op-
timization (1) in our implementation so that the optimiza-
tion (1) is replaced by,

min
g

max
h

d(Ba,Bn)− αd(Ba,Bp), (4)

where α is a weight set to 100 in our experiments.
Pre-defined metric d. Metric d is defined differently in dif-
ferent tasks due to their different evaluation metrics (e.g., rain
streak removal [10, 15], reflection removal [16, 11]). More
specifically, for the problem of rain streak removal, we de-
fine d = `per + λ1`ssim + λ2`psnr, while for the problem of
reflection removal, we define d = `per + λ1`ssim + λ1`si,
where `per, `ssim, `psnr, and `si are perceptual loss [17],
structural similarity index (SSIM) [18], peak signal-to-noise
ratio (PSNR) [19], and structural index (SI) [20] that mea-
sures the difference between two images. λ1 and λ2 are set to
0.5 and 1

60 in our implementation.
Network architectures Both networks g and h are composed
of two convolutional layers with the stride size of two for
down-sampling, six residual blocks [21], and two interpo-
lating convolutional layers with the stride size of two for
up-sampling, with instance normalization [22]. The output
channels for g and h are 1 and 3 respectively. The detailed
architecture is displayed in Figure 1 (bottom).

Our algorithm is summarized in Alg. 1. Both neural net-
works g and h are trained using Adam solver [23] with β1 =
0.5 and β2 = 0.999.

3. EXPERIMENTS

In this section, we report our performance compared with
state-of-the-art methods for the tasks of rain streak removal
and reflection removal.

3.1. Rain Removal

Datasets. We use DIDMDN-DATA [10], which is one of the
most recently published datasets, to evaluate our performance
for the task of rain streak removal. There are 12000 samples
for training and 1200 samples for testing. We set the learning
rates for g and h to 0.0002 for the first 50 epochs and decay
to 0.0001 for the next 50 epochs.
Comparison methods. We compare our method against
four state-of-the-art methods, including deep detail network
(FH17) [9], joint rain detection and removal (YT17) [3],
density-aware single image de-raining using a multi-stream
dense network (ZP18) [10], and non-locally enhanced encoder-
decoder network (LH18) [24]. SSIM and PSNR are used
for evaluation on the luminance channel (i.e., Y channel of
YCbCr space) as suggested by [24].

Table 1. Comparison of quantitative results in terms of SSIM
and PSNR on DIDMDN-DATA [10].

Metrics FH17 YT17 ZP18 LH18 Ours
SSIM 0.7057 0.8763 0.8707 0.9192 0.9331
PSNR 23.53 30.35 28.30 33.16 33.43

Performance. The quantitative comparison with four state-
of-the-art methods is displayed in Table 1. The numbers are
the average over all the testing images. Our method consis-
tently achieves the best performance among all the methods.
Two examples of visual comparison are shown in Figure 2. A
clear recovery can be produced by both LH18 [24] and our
method, however, LH18 [24] loses details as compared with
ours as shown in the close-up views. Both quantitative and
visual results validate the effectiveness of our method.

3.2. Reflection Removal

Datasets. We follow the protocol of several state-of-the-art
methods [12, 11, 16] on this topic and perform training on
synthetic data and testing on real data. Same mixture model
as in [11] is adopted, i.e., M = αB + βR, to synthesize
our training data. The noise-free images are selected from
PLACES365 dataset [25]1 and they are mixed with images
randomly selected from 5552 reflection images provided
by [11]. With α and β being randomly sampled from uniform
distributions of α ∼ U(0.7, 1), β ∼ U(0.1, 0.6), we create
a total of 19214 data pairs for training. We use a recently
published SIR2 benchmark dataset [4] for evaluation, which
contains 499 reflection-contaminated images as well as cor-
responding reflection-free images. We set the learning rates

1Images are from four scenes, OFFICE, PARKING GARAGE-INDOOR,
RESTAURANT PATIO and STREET, excluding the gray images.



Fig. 2. Visual comparison of rain streak removal results on
DIDMDN-DATA [10]. Zoom in for better details.

for both g and h to 0.0002 for the first 100 epochs and decay
to 0.0001 for the next 100 epochs in this experiment.
Comparison methods. We compare our method with four
state-of-the-art methods, including Laplacian `0 minimiza-
tion (AA17) [26], cascaded edge and image learning net-
work (FY17) [12], concurrent reflection removal network
(WS18) [11], and reflection separation with perceptual loss
(ZN18) [16]. Results from these methods are produced based
on the authors’ implementations. We learn new models
for all the learning-based methods (FY17 [12], WS18 [11],
ZN18 [16]) using our training data for fair comparisons.
SSIM and SI are used to evaluate our method as previous
works [11, 4] did.
Table 2. Comparison of quantitative results in terms of SSIM
and SI on SIR2 [4].

Metrics AA17 FY17 WS18 ZN18 Ours
SSIM 0.8614 0.8649 0.8907 0.8981 0.9022

SI 0.8979 0.8896 0.9160 0.9150 0.9229

Performance. The quantitative comparison with four state-
of-the-art methods is displayed in Table 2, in which the
numbers are the average over all the testing images. Our
method consistently achieves the best performance among all
the methods. Two examples of visual comparison are shown
in Figure 3. As can be observed, all these compared methods
fail to remove reflection while our method produces a clear
recovery for these examples. Both quantitative and visual
results validate the effectiveness of our method.

Fig. 3. Visual comparison of reflection removal results on
SIR2 [4]. Zoom in for better details.

4. CONCLUSION

This paper presents a novel adversarial scheme to perform
image denoising for the tasks of rain streak removal and re-
flection removal. The gradient map is used as a prior image
to perform a jointly min-max optimization. We show that the
proposed adversarial scheme provides very good solutions for
both the gradient map and the noise-free image. The superior
performances on two public benchmark datasets validate the
effectiveness of the proposed approach.

Exploiting other types of prior images in addition to the
gradient map (e.g., rain streak image) and applying our ap-
proach to other denoising tasks will be our future works.
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