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Abstract

Image-based methods for indoor lighting estimation suf-
fer from the problem of intensity-distance ambiguity. This
paper introduces a novel setup to help alleviate the ambi-
guity based on the event camera. We further demonstrate
that estimating the distance of a light source becomes a
well-posed problem under this setup, based on which an
optimization-based method and a learning-based method
are proposed. Our experimental results validate that our
approaches not only achieve superior performance for in-
door lighting estimation (especially for the close light) but
also significantly alleviate the intensity-distance ambiguity.

1. Introduction

Obtaining lighting information is a classic problem in
computer vision and graphics. It contributes to solving a
variety of vision tasks, such as photometric stereo [29, 78],
virtual object compositing [31], and scene understanding
[55]. A field of researches study to estimate or calibrate
lighting by taking a single image of an illuminated object
(e.g., [9, 34]) or scene (e.g., [59, 35]) as the input.

Early work assumes the light source to be distant and fo-
cuses on the estimation of light direction (e.g., [15]). This
assumption is often violated for indoor scenes due to the lo-
calized light sources. Recent advances tackle this problem
by either estimating a spatially-varying lighting at different
scene points (e.g., [16]) or predicting the light source posi-
tions in 3D space (e.g., [14]). However, as these approaches
take a single image as the input, this inherently ill-posed
problem is likely to suffer from the problem of intensity-
distance ambiguity. Because the light distance inferred
from a given intensity (recorded by an image) is not guaran-
teed to be unique if the light source intensity changes [36].

Recently, the event camera (e.g., [37]) has attracted the
attention of many academics due to its advantages of high
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Figure 1. The setup of our method: using an event camera to cap-
ture the intensity changes on a purely diffuse sphere, which is
placed in a dark room, for the split second of turning light on.

temporal resolution, high dynamic range, and sensitivity to
small intensity changes. And it has been used to solve vari-
ous vision tasks such as 3D reconstruction [64], optical flow
estimation [13], and segmentation [62].

In this paper, we leverage the event camera to alleviate
the intensity-distance ambiguity for indoor lighting estima-
tion. Our basic idea is to use more information to better
constrain the estimation of light source parameters, because
the event camera can capture signals in a split second. To be
specific, we introduce a novel setup as shown in Figure 1.
With such a setup, we observe that the intensity-distance
ambiguity can hardly be found for the event streams (Fig-
ure 2). We detail the analysis about the ambiguity in Sec-
tion 3.2, which is based on our analytic formulation of event
streams (Section 3.1). We further show that estimating the
distance of light source becomes a well-posed problem with
the input of event streams, based on which an optimization-
based method is proposed (Section 4.1). We also propose a
learning-based method for robust lighting estimation (Sec-
tion 4.2). To evaluate our methods, we collect two testing
datasets with paired data captured by a traditional camera
and an event camera (Section 4.2). Experimental results
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Figure 2. (a)&(b) (or (c)&(d)) are paired data, captured with the
same light-emitting diode, i.e., LED, 3w (or 5w), and the same
distance of light source 119 cm (or 213 cm). (a)&(c) are RGB im-
ages captured by a digital camera while (b)&(d) are event streams
captured by an event camera (all event streams in this paper are vi-
sualized based on the method in [81]). Even though (a)&(c) have
a similar appearance, (b)&(d) display discriminative features.

demonstrate that our methods not only achieve superior per-
formance for lighting estimation, but also significantly alle-
viate the intensity-distance ambiguity. In addition, we pro-
vide a byproduct application to classify the types of the light
source. Our contributions are summarized as:

1. We introduce a novel setup, based on which we show
that the intensity-distance ambiguity can be alleviated
for the problem of indoor lighting estimation.

2. We show that estimating lighting distance becomes a
well-posed problem with our setup, based on which we
propose an optimization-based method and a learning-
based method.

3. We demonstrate that our methods not only achieve su-
perior performance but also significantly alleviate the
intensity-distance ambiguity for the problem of indoor
lighting estimation. Our byproduct of lamp classifica-
tion also verifies the effectiveness of our methods.

2. Related Work
2.1. Lighting Estimation

Existing lighting estimation methods can be roughly cat-
egorized according to whether the assumption of distant
light is taken. Such an assumption is often applied to the
outdoor scenes [26, 27, 25, 76, 24, 45, 33], or found from
methods that rely on an object, e.g., light probes [9, 10, 6,
34], faces [75, 5], cars [20], bags of chips [50], glass [77],
or illuminated objects [6, 42, 19]. The assumption of dis-
tant light often violates for indoor scenes. Except for a few
early works [15], recent advances address the problem of
spatially-varying lighting estimation. These methods either
recover a spherical panorama for each point of the given
scene [16, 59, 35, 61, 65] or directly predict the position of
light sources in 3D space [14].

In this paper, we also consider the problem of parametric
indoor lighting estimation. Different from existing meth-
ods, we also predict the intensity changing function of the
light source when turning it on.

2.2. Event-based Camera

The event camera (e.g., DVS [37]) is a bio-inspired sen-
sor that imitates the neural structure of the eye. Differ-
ent from traditional cameras that directly collect the radi-
ant intensity, event cameras capture small changes of in-
tensity with high temporal resolution (in microseconds)
with significantly lower power consumption. These ad-
vantages are imposed to solve versatile vision tasks such
as tracking [18, 43, 52, 74, 69], optical flow estimation
[13, 11, 62, 17, 49, 2, 47, 1], image restoration or enhance-
ment [54, 66, 53, 48, 38, 30, 8, 67, 70, 22, 63], depth estima-
tion [81, 3, 80, 79, 64], SLAM [12, 44, 39], segmentation
and recognition [62, 46, 4, 41, 68, 58, 56, 7, 28, 40].

Most the existing works produce the event signal based
on the relative motion between the camera and the scene.
In contrast, this paper focuses on the signal brought by the
intensity changes of a light source, in a static scene without
relative motion. To the best of our knowledge, this is the
first attempt to use event cameras for lighting estimation.

3. Modeling
This section models our setup shown in Figure 1. The

scene is considered to be static during the split second. Due
to the short period, the fact that both the camera and the
sphere stay static, and the time window of the event camera
is very short (less than 0.1 second), we consider our setup
to be single shot.

3.1. Analytic Formulation of Event Streams

Thanks to the static scene, we build the analytic formu-
lation of event streams based on the radiant intensity.

Analytic formulation of radiant intensity. As the dis-
tance of the light source (> 70 cm) is much larger than the
size of the sphere (8 cm), we assume that the direction and
intensity of incoming light for all points on the sphere sur-
face are the same, similar to other topics (e.g., photometric
stereo [57]). We also assume the illuminance of emitting
light obeys the inverse square law [36]. Then the incoming
light on the sphere surface S at time t can be formulated as

L(t) =
exp(Φ(t))

4πd2
, (1)

where d is the distance between the light source and sphere.
We consider the intensity changing function as a power-on
step function [32], and represent it as exp(Φ(t)). As we
use a purely diffuse sphere, the radiant intensity of point
x at time t can be formulated according to the Lambertian
reflectance model

I(x, t) = ρL(t) max(〈nl,nx〉 , 0), t ∈ [t0, tn], x ∈ S, (2)

where ρ is the albedo which is a constant, nl is the direction
of the light source, nx is the surface normal of point x, the



action of turning light source on starts at time t0, and Φ(t)
is stable at time tn.

Radiant intensity from event streams. On the other
hand, the event camera captures the intensity changes for
each point x ∈ S for the split second of turning light
on, and produces a stream of asynchronous sparse events
e
.
= (x, t, p) [37]. As the intensity changes are monotoni-

cally non-decreasing for this split second, we have polarity
p = 1 and such the event streams can be described as1

e(x, t)
.
=

{
1, if ∆I = C,
none, otherwise. t ∈ [t0, tn], x ∈ S, (3)

where
∆I = lg I(x, t)− lg I(x, t−∆t), (4)

I(x, t) is the intensity captured by the camera for a point x
at time t, C is the contrast threshold and is obtained from
the camera configuration (0.812 in this paper), ∆t is the
time since the last event is triggered at position x. Due to the
darkroom, all initial intensity captured by the camera can be
regarded as the same value I0, i.e., ∀x ∈ S, I(x, t0) = I0.
We set I0 = 1 to simplify the computation. As the position
of point x regarding the event camera is unchanged during
this split second, the radiant intensity of x at time t can be
calculated based on the summation of events

Ie(x, t) = I0 exp(C

∫ t

t0

e(x, t)dt), t ∈ [t0, tn], x ∈ S.

(5)
The equality of Ie(x, t) and I(x, t) builds the analytic

formulation of e(x, t). This formulation describes the rela-
tion between e(x, t) and the parameters of light source, i.e.,
distance d, direction nl, intensity changing function Φ(t).

3.2. Ambiguity Analysis

According to Equation (1), the intensity of incoming
light is determined by Φ(t) and d. We consider an object
or a scene is illuminated by two different light sources with
intensity functions of Φ1(t) and Φ2(t), respectively.

For image-based lighting estimation methods, intensity-
distance ambiguity exists if exp(Φ1(tn)) = α exp(Φ2(tn))
holds, where α is a positive constant. For our methods that
take event streams as the inputs, intensity-distance ambigu-
ity exists only if the following equation holds

exp(Φ1(t)) = α exp (Φ2(t)), ∀t ∈ [t0, tn]. (6)

As Φ(t) is determined by a sophisticated physical process
including inherent factors such as current, resistance, and

1We replace the condition ∆I ≥ C by ∆I = C. This replacement
has little impact on our following analysis. It only brings a consistent
transformation to function Φ(t), while the accurate Φ(t) is not necessarily
required in our solution or analysis.
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Figure 3. For each tt ∈ [t0, tn] where events are triggered, Φ(tt)
can be calculated based on the analytic formulation of e(x, t), with
known d and nl. We plot points {tt,Φ(tt)} (Φ(tt) is averaged
over different x at time tt) according to eight event streams (rep-
resent by different colors). For each set of points, we fit it based
on Equation (7). The data are from controlled dataset and wild
dataset.

the arrangement&number of LEDs, we argue that any two
Φ(t) can hardly satisfy the constraint in Equation (6).

Obviously, satisfying the constraint in Equation (6) is
much more difficult than that for images. Therefore, our
setup is expected to alleviate the intensity-distance ambi-
guity for lighting estimation. The experimental validation
about the ambiguity can be found in Section 5.2.

3.3. Approximating Φ(t)

Although Φ(t) is determined by a sophisticated physical
process, it is determined by finite inherent factors. Inspired
by the shapes of curves in Figure 3, we use an empirical
formulation to approximate Φ(t)2

Φ(t) = a lg(t+ c) + b, (7)

where a and b are used to formulate the inherent factors of
the light source. c ∈ [0, 2000] is used to model the time de-
lay from the moment of turning light on to t0 to tolerate the
fluctuation caused by unexpected noises. We observe that
approximation in Equation (7) works well for the estima-
tion of light source distance 3. The experimental validation
can be found in Section 5.3.

3.4. Parametric Lighting

We use the parametric lighting-to-environment map pro-
jection function described in GH19 [14] to convert para-
metric light into an environment map. Unlike GH19 [14],
our method cannot estimate color, since the event camera
can only capture intensity changes. In addition, since the

2The curve describes the intensity changes caused by transient current
spikes in a rise time [72] and a step function can always fit well.

3The function in Equation (7) can be revised with more parameters
(e.g., higher-order polynomials) for more complicated cases only if the
numbers of the unknown is smaller than the number of constraints used in
our paper (e.g., 7).



distance of the light source (> 70 cm) is much larger than
its radius (∼ 10 cm), we replaced the angular size [73] in
GH19 [14] by s/d, where s is a fixed value (10 cm) indicat-
ing the radius of the point light source and d is the distance
of the light source. The projection function can be written
as:

f(nl, s, d,nx) = exp(
nl · nx − 1

1
4π

s
d

) (8)

4. Proposed Method
Inspired by the analytic formulation of event streams,

our indoor lighting estimation aims to estimate the light
source parameters of distance d, direction nl, and intensity
changing function Φ(t) by taking event streams as the input.

4.1. Optimization-based Method

Based on Equation (2) and Equation (5), our indoor
lighting estimation is to solve an over-determined system:
∀t ∈ [t0, tn],∀x ∈ S, ‖Ie(x, t) − I(x, t)‖ = 0, which can
be achieved by the following minimization4

min
d,nl,a,b,c

∫
S

∫ tn

t0

‖Ie(x, t)− I(x, t)‖dtdx. (9)

To solve Equation (9), we first optimize the light direction
nl by minimizing the difference between the analytic illu-
minated region and that captured by the event camera:

min
nl

∫
S

‖B(

∫ tn

t0

Ie(x, t)dt)−B(

∫ tn

t0

I(x, tn)dt)‖dx,

(10)

where function B(I) produces the binarization result of I ,

B(I) =

{
1, if I > I0
0, otherwise, (11)

and we have B(
∫ tn
t0
I(x, tn)dt) = B(max(〈nl,nx〉 , 0))

This is achieved by the stochastic gradient descent
technique[60] with n0

l initialized as (1, 0, 0). With the es-
timated nl, we alternatively optimize d and {a, b, c} with
an iteration scheme, and they are initialized as {5, 0.01,
100}, which is also solved by the stochastic gradient de-
scent technique[60].5

4.2. Learning-based Method

Lighting estimation by the optimization-based method
may produce unreliable results due to the unexpected ran-
dom noise in event streams and the fact that I(x, t) is not
completely equivalent to Ie(x, t). Besides, the problem of

4We integrate ρ to Φ(t).
5More details about our algorithm can be found in the supplementary

material.
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Figure 4. Example of an unreliable prediction by our
optimization-based method (ground truth vs. prediction: 182 cm
vs. 270 cm). (a) The RGB image. (b) Event streams. (c) A set of
points {tt, Φ(tt)} obtained as the same way in Figure 3.

the local minimum leads to less accurate estimation (Sec-
tion 5.3). Figure 4 shows an example of such an unreliable
prediction, i.e., Φ(t) cannot be well fitted due to the outliers
from unexpected noise. To this end, we propose a learning-
based method in this section.

Our learning-based method focuses on the estimation
of d and {a, b, c} and leaves the prediction of nl for the
optimization-based method. Because the optimization in
Equation (10) addresses the influence of noise by integrat-
ing signals with respect to time t and is free from the prob-
lem of local minimum due to the binarization. The overview
of our framework is shown in Figure 5.

Streams pre-processing. Similar to several previous
methods, we pre-process the event stream so that it can be
used as an input of a neural network. We adopt a similar
data pre-processing strategy as that in [81]. The temporal
dimension (i.e., 24 ms) is discretized into 24 bins. Tem-
poral information is preserved by the sequential order of
these bins. For the temporal information in each bin, we en-
code the event streams according to the relative timestamp
of the first event for each point x. We also align the input
to make their elevation angles uniform based on the esti-
mated nl (i.e., 45◦). Experimental results show that such a
pre-processing strategy is sufficient to obtain discriminative
cues for lighting estimation.

Network architecture and loss functions. The input
passed through the headless ResNet-50 architecture [23]
and produce a 2048-dimensional latent vector. This vec-
tor is then fed to three fully-connected layers with 1024
units, 500 units and 100 units respectively to regress d and
{a, b, c} separately. We use L1 loss [21] to perform super-
vised training and the loss function is

L = L1(dgt, dpre) + w1L1(agt, apre)+ (12)
w2L1(bgt, bpre) + w3L1(cgt, cpre) (13)

where subscript ‘gt’ and ‘pre’ represent the ground truth
and prediction of a variable. We empirically set the weight
w1 = 70, w2 = 40, w3 = 0.001 in our experiment.
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Figure 5. The framework of our learning-based method. Training data augmentation: each real data will generate 48 synthetic data based on
the angle map. Estimating nl: we estimate the direction of the light source by minimizing the difference between the analytic illuminated
area and that captured by the event camera. Estimating Φ(t) and d: the event streams are discretized into frames and then fed to our
network.

(a) (b)

Figure 6. (a) Illustration of our data collection. (b) Schematic di-
agram of data collection. We randomly collect the same number
of samples in each colored area, where the elevation angle ranges
from 0◦ to 60◦, and azimuth angle ranges from 0◦ to 75◦ and from
105◦ to 180◦. Note that the variation of elevation angle is less
considered as it is aligned in our pre-processing procedure.

Training details. We implement the network using Py-
torch [51] and our entire network contains 3.6M parame-
ters. The parameters of ResNet-50 are initialized by their
pre-trained model. The network is trained for 100 epochs
with an early stopping mechanism. The Adam optimizer is
used with a learning rate of 0.001 and a batch size of 64.

Data collection. We collect two types of data for
training and testing: controlled dataset and wild dataset.
The controlled dataset is to investigate the effectiveness of
our method that alleviates the intensity-distance ambiguity.
Specifically, we collect 400 real data with different d ranges
from 70 cm to 300 cm and different nl evenly sampled from
the orange surface as shown in Figure 6 6. To simulate dif-

6We suppress the influence of inter-reflection by putting a black cloth
between the sphere and the upholder and keeping the distance between the

ferent types of lighting, we use LED lamps with different
powers (i.e., 0.5w, 3w, 5w) and an ILB (15w) to capture
these data (100 for each). Their corresponding RGB im-
ages (shown in Figure 7(a)) on the illuminated sphere are
also captured for comparison with image-based methods.
The wild dataset is to investigate the robustness and prac-
ticability of our methods. Specifically, we collect 363 real
data from 19 different real scenes. Most of the wild dataset
are captured with a single light source, and only a few of
them are captured with multiple light sources where lights
are close to each other. Due to the close distance between
multiple light sources, we also consider them to be single
light sources. The mean of light distances in wild dataset
is 198cm. Each data includes event data, an RGB image,
the position of the light source, and the environment map
collected at the same position with a light probe (shown in
Figure 7(b))7.

Data processing. We identify time t0 = 0 as the moment
when 30 events appeared within 1 ms. To balance the effi-
ciency and efficient, we set the split second of turning the
light on to be 24 ms, i.e., tn = 24. We find it is sufficient to
extract discriminative features for lighting estimation.

Training and testing data. We randomly select 160 data
from controlled dataset and augment 7680 = 48× 160 data
for training. Note that these 160 data are not included in
our training dataset. The augmentation is achieved by using
another 48 different nl to synthesize 48 new data based on

sphere and other objects as far as possible.
7We transform light probes as panoramas through HDRshop. HDR-

shop: https://vgl.ict.usc.edu/HDRShop/.

https://vgl.ict.usc.edu/HDRShop/
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Figure 7. (a) RGB data in controlled dataset (upper left: LED
lamps (3w), upper right: LED lamps (5w), bottom left: ILB lamp
(15w), bottom right: LED lamps (0.5w)) (b) RGB data in wild
dataset (upper), their corresponding light probes (bottom).
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Figure 8. (a).The error distribution is displayed using the box-and-
whisker plot. Red lines indicate mean values, top and bottom
bounds of boxes indicate the first and third quartile values, and the
top and bottom ends of the vertical black lines indicate the min-
imum and maximum values. (b).The distance distribution. The
middle line of each curve indicates the mean value. The differ-
ence between sidelines and middle lines for each curve reflects the
standard deviation values.

each of 160 data. We build the distribution of events, and let
the distribution of synthetic data be the same as that of real
data, regarding each point with the same < nl,nx >. We
augmented 48 data for each data by increasing the original
nl by 4◦, 5◦ and 6◦, which brings (3 ∗ 2 + 1)2 − 1 = 48
surrounding directions as shown in Figure 5 (angle map).
We use the remaining 240 data from controlled dataset and
all data in wild dataset for testing.

5. Experiments

We perform the comparison with a parametric method
GH19 [14] and an object image method WP18 [71].
GH19 [14] predicts the 3D positions of three light sources
in an indoor scene, the one which is closest to the ground
truth is used for our comparison. WP18 [71] provides three
pre-train models of different materials, the best one is used
for our comparison. We define the direction error as the an-
gle between the direction of prediction and that of ground
truth. Similar to [14], we use metric RMSE to evaluate the
quantitative performance of estimated light distance.

Table 1. Quantitative performance comparison in terms of RMSE
for distance and direction estimation in controlled dataset (mean
± std).

Method Distance Direction

Ours (optimization) 51.70±62.59 13.4◦ ±5.26◦

Ours (learning) 27.05±35.78 13.4◦±5.26◦

GH19 [14] 75.63±89.99 38.44◦ ±7.77◦

Table 2. Quantitative performance comparison in terms of RMSE
for distance and direction estimation in wild dataset (mean± std).

Method Distance Direction

Ours (optimization) 53.0±67.9 28.8◦ ±34.3◦

Ours (learning) 34.0±46.5 28.8◦±34.3◦

GH19 [14] 112.4±126.8 43.0◦ ±48.6◦

5.1. Overall Performance

Controlled dataset. Table 1 and Figure 8 display the
quantitative performance in controlled dataset. Since
WP18 [71] cannot predict the lighting distance, we only
compare with GH19 [14]. As can be observed, both
our optimization-based method and learning-based method
achieve much better overall performance regarding mean
and standard deviation as compared with GH19 [14]. The
performance advantage of our methods benefits from more
constraints from event streams than those from an image for
lighting estimation. It can also be found that our learning-
based method outperforms the optimization-based method,
due to the unreliable prediction of our optimization-based
method as introduced in Section 4.2. Although our methods
achieve superior performance advantage over GH19 [14]
for a close distance (i.e., < 200cm), it fails to outperform
GH19 [14] for a large distance (i.e., > 200cm). This is for
two reasons: 1) A larger distance indicates a smaller inten-
sity of the incoming light on the sphere, leading to a smaller
number of events triggered. This makes the random noise
more dominant. The unreliable input of event streams de-
grades the performance of our methods. 2) GH19 [14] tends
to produce results between 200 cm and 300 cm for most im-
ages as shown in Figure 8 (b).

Wild dataset. Table 2 displays the quantitative perfor-
mance in wild dataset. As can be observed, due to the
more complex scenarios (i.e., different light source shapes)
in wild dataset, the results are not as good as controlled
dataset, Even so, our method achieves better results as
compared with GH19 [14], which indicates its good gen-
eralization to real scenarios. We further perform visual
quality study for outputs of our methods, GH19 [14], and
WP18 [71]. Figure 9 shows the environment maps results
of real indoor scenes. As can be observed, our method
produces a much reliable estimation as compared with that
from GH19 [14] and WP18 [71]. We also investigate the
visual quality performance by inserting objects into indoor



Ours (optimization) Ours (learning) GH19 WP18GTRGB input

Figure 9. Visual comparison of environment maps for data in wild datasets. From left to right: the RGB input, the ground truth, results
from our optimization-based method, our learning-based method, GH19 [14], and WP18 [71].

Real Scene Ours (optimization) Ours (learning) GH19 WP18

168 cm 100 cm 170 cm 200 cm not applicable

202 cm 184 cm 188 cm 327 cm not applicable

Figure 10. Visual comparison of object insertion results for data in wild datasets. From left to right: the scene image, results from our
optimization-based method, our learning-based method, GH19 [14], and WP18 [71]. Numbers below each image indicates the ground
truth or predicted result of light source distance. The input data of our method is captured by putting the diffuse sphere on the desk (in the
middle of each scene).

scenes in the real world. Kindly note that the natural lamps
in these scenes (i.e., ceiling lamp and table lamp) are quite
different from those lights in the training data. As can be
observed from Figure 10, the inserted objects are more re-
alistic based on results from our methods than those from
GH19 [14] and WP18 [71]. For example, the cast shadows
rendered with our results are more consistent with those in
the scene, while those rendered with results from GH19 [14]
are very concentrated, caused by their incorrectly predicted
direction and distance of the light source. The virtual ob-
jects at several positions in WP18 [71] are same since their
methods assume that the light source is distant. The per-
formance advantage of our optimization-based method and
learning-based method validates the good generalization of
our methods to indoor scenes in the real world.

5.2. Validation for Ambiguity Alleviation

To further investigate the effectiveness of our method
that alleviates the intensity-distance ambiguity, we collect
another testing dataset. To be specific, we collect 20 paired
data from controlled dataset, each pair contains two images
as well as their corresponding event streams. We use dif-

ferent lamps and carefully adjust the light source distance
to ensure the images in each pair have a similar appearance
while quite different light distances d.

As can be observed from Table 3, our methods achieve
much smaller RMSE for all these paired data while produc-
ing more discriminative results for two data from each pair.
Figure 11 visualizes the distributions of predicted results.
It can be found that our methods successfully distinguish
close (green dots) and far (orange dots) light source dis-
tance and produce more accurate predictions. GH19 [14]
fails to separate data captured based on close (yellow dots)
and far lights (blue dots). These results clearly show that
our method successfully alleviates the ambiguity between
light source intensity and light source distance.

5.3. Validation for Approximation in Equation (7)

Since the controlled dataset contains the same number of
different types of light sources, in this section we validate
the approximation in Equation (7) with controlled dataset.
As there is no ground truth of Φ(t) or {a, b}, we regard
{a, b} fitted with known d and nl as the ‘ground truth’. As
can be observed from Figure 12 (left), {a, b} are well sepa-
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Figure 11. The x-axis represents the ground truth, and the y-axis
represents the predicted distance. We compare our optimization-
based method (left) and our learning-based method (right) with
GH19 [14]. Different colors of dots represent data captured
either with a close light source (green&yellow) or a far one
(blue&orange).
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Figure 12. The distribution of {a, b} for our 240 testing data from
controlled dataset. x-axis represents variable a while y-axis rep-
resents variable b. Left: {a, b} fitted by optimizing Equation (9)
with known d and nl, and are considered as the ‘ground truth’.
Middle: {a, b} fitted by optimizing Equation (9) with unknown d
and nl. Right: {a, b} calculated by our learning-based method.
Different colors represent data captured by different lamps.

Table 3. Quantitative performance comparison for distance estima-
tion (mean ± std). The average difference reflects the difference
between two predicted distances for each paired data whose RGB
images contains intensity-distance ambiguity.

Method Average error Average difference

Ours (optimization) 40.50±47.20 38.09±44.90
Ours (learning) 28.87±35.56 76.37±77.10
GH19 [14] 75.50±96.55 10.90±11.88

rated regarding different lamps. This observation verifies
the practicability of our approximation to Φ(t) in Equa-
tion (7). Note that the fluctuation of {a, b} for each lamp
is due to different initial currents at the moment of turning
light on, caused by the fact that our light sources are pow-
ered by the alternating current.

We also illustrate the distributions of {a, b} calculated by
our methods. As shown in Figure 12 (middle), although the
distribution of {a, b} by our optimization-based method is
less accurate in absolute spatial space, it also contains sep-
arated clusters regarding different lamps. Considering both
a and b have positive correlation with Φ(t), the accurate es-
timation of d by our optimization-based method (Table 1),
and also the well separated clusters in Figure 12 (middle),
we consider our optimization-based method is troubled by
the problem of local minimum. Our learning-based method
produces a much more accurate distribution of {a, b} and
which is considered to be free from the local minimum

Table 4. Light source classification results of our 240 testing data
from controlled dataset.

Lighting type LED(0.5w) LED(3w) LED(5w) ILB (15w)

Accuracy(%) 15.0 41.7 100.0 90.0

problem, as shown in Figure 12 (right).

5.4. A Byproduct for Lamp Classification

We investigate a byproduct application of lamp classifi-
cation in this section. The results from our optimization-
based are not reported due to the local minimum problem.
A simple strategy of lamp classification can be achieved by
comparing an estimated {a, b} with all {a, b} in Figure 12
(left). Table 4 shows the classification accuracy using our
learning-based method. As can be observed, our method
achieves a very high accuracy rate for the ILB lamp (15w)
and the LED lamp (5w) as the strong lighting produces
more reliable event streams for our estimation.

6. Conclusion

In this paper, we leverage the event camera to allevi-
ate the intensity-distance ambiguity for parametric indoor
lighting estimation based on its advantages of high tempo-
ral resolution and high dynamic range. To the best of our
knowledge, we are the first to estimate lighting using event
cameras. We introduce a novel step, i.e., using an event
camera to capture the intensity changes on a purely diffuse
sphere, which is placed in a dark room, for the split second
of turning the light on. We build the analytic formulation of
event streams through the radiant intensity. We then pro-
pose an optimization-based method and a learning-based
method for lighting estimation. The comparison with the
state-of-the-art method demonstrates that our methods not
only significantly alleviate the intensity-distance ambiguity
but also achieve superior performance for lighting estima-
tion.
Limitations. Although our methods alleviate the intensity-
distance ambiguity for the indoor lighting estimation, they
require a controlled environment such as the dark scene, sin-
gle light source, and the action of turning light on. And our
methods cannot be applied to natural lighting. The diffuse
sphere also limits our methods to predict high-frequency
lighting.
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