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Abstract

The goal of policy-based reinforcement learning (RL) is to search the maximal point of
its objective. However, due to the inherent non-concavity of its objective, convergence to a
first-order stationary point (FOSP) can not guarantee the policy gradient methods finding a
maximal point. A FOSP can be a minimal or even a saddle point, which is undesirable for RL.
Fortunately, if all the saddle points are strict, all the second-order stationary points (SOSP) are
exactly equivalent to local maxima. Instead of FOSP, we consider SOSP as the convergence
criteria to character the sample complexity of policy gradient. Our result shows that policy
gradient converges to an (ǫ,

√
ǫχ)-SOSP with probability at least 1 − Õ(δ) after the total cost

of O
(

ǫ−
9

2

(1− γ)
√
χ
log

1

δ

)
, where γ ∈ (0, 1). Our result improves the state-of-the-art result

significantly where it requires O
(
ǫ−9χ

3

2

δ
log

1

ǫχ

)
. Our analysis is based on the key idea that

decomposes the parameter space Rp into three non-intersected regions: non-stationary point,
saddle point, and local optimal region, then making a local improvement of the objective of
RL in each region. This technique can be potentially generalized to extensive policy gradient
methods.

1 Introduction

Policy gradient method (Williams, 1992; Sutton et al., 2000) is widely used to search the opti-
mal policy in modern reinforcement learning (RL). Such method (or its variants) searches over a
differentiable parameterized class of polices by performing a stochastic gradient on a cumulative ex-
pected reward function. Due to its merits such as the simplicity of implementation in the simulated
environment; it requires low memory; it can be applied to any differentiable parameterized classes
(Agarwal et al., 2019), policy gradient method has achieved significant successes in challenging fields
such as robotics (Deisenroth et al., 2013; Duan et al., 2016), playing Go (Silver et al., 2016, 2017),
neural architecture search (Zoph and Le, 2017), NLP (Kurita and Søgaard, 2019; Whiteson, 2019),
computer vision (Sarmad et al., 2019), and recommendation system (Pan et al., 2019).

Despite it has tremendous successful applications, suffering from high sample complexity is still a
critical challenge for the policy gradient (Haarnoja et al., 2018; Lee et al., 2019; Xu et al., 2020a).
Thus, for policy gradient, theory analysis of its sample complexity plays an important role in RL
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since the sample complexity not only provides an understanding of the policy gradient but also gives
insights on how to improve the sample efficiency of the existing RL algorithms.

Investigation of the sample complexity of policy gradient algorithm (or its variant) can be traced
back to the pioneer works of Kearns et al. (2000); Kakade (2003). Recently, to improve sample
efficiency, Papini et al. (2018); Shen et al. (2019); Xu et al. (2020a) introduce stochastic variance
reduced gradient techniques (Johnson and Zhang, 2013; Nguyen et al., 2017a) to policy optimiza-
tion, and they have studied the sample complexity of policy gradient methods to achieve a first-order
stationary point (FOSP) (i.e., θ such that ‖∇J(θ)‖2 ≤ ǫ). However, since the objective of RL is
a non-concave function with respect to the standard policy parameterizations (Papini et al., 2018;
Agarwal et al., 2019), a FOSP could be a maximal point, a minimal point, and even a saddle point.
Both minimal points and saddle points are undesirable for policy gradient since its goal is to search
a maximal point, which implies within the numbers of samples provided by Papini et al. (2018);
Shen et al. (2019); Xu et al. (2020a), we can not guarantee the output of their policy gradient
algorithm is a maximal point. This motivates a fundamental question as follows,

Question 1. How many samples does an agent need to collect to guarantee the policy gradient
methods converge to a maximal point certainly?

1.1 Our Work

In this paper, we consider the second-order stationary point (SOSP) to answer Question 1. More
specifically, inspired by the previous works from non-convex optimization (Jin et al., 2017; Daneshmand et al.,
2018), we investigate the sample complexity of policy gradient methods finding an (ǫ,

√
ǫχ)-SOSP,

see Definition 1, i.e., the convergent point θ satisfies

‖∇J(θ)‖2 ≤ ǫ, and λmax(∇2J(θ)) ≤ √
χǫ.

The criterion of (ǫ,
√
ǫχ)-SOSP requires the convergent point with a small gradient and with almost

a negative semi-definite Hessian matrix. This criterion not only ensures a convergent point is a
FOSP but also rules out both saddle points (whose Hessian are indefinite) and minimal points
(whose Hessian are positive definite). Therefore, convergence to a (ǫ,

√
ǫχ)-SOSP guarantees the

policy gradient methods converge to a local maximal point clearly. Our result shows that within a
cost of

O
(

ǫ−
9
2

(1− γ)
√
χ
log

1

δ

)
= Õ

(
ǫ−

9
2

)
,

policy gradient converges to an (ǫ,
√
ǫχ)-SOSP with probability at least 1 − Õ(δ). Our result

improves the state-of-the-art result of (Zhang et al., 2019) significantly, where they require Õ(ǫ−9)
samples to achieve an (ǫ,

√
ǫχ)-SOSP.

Notably, we provide a novel analysis that can be potentially generalized to extensive policy gradient
methods. Concretely, we decompose the parameter space Rp into three different regions: non-
stationary point, saddle point, and local optimal region, then making a local improvement in each
region. The main challenge occurs on the saddle point region, where we utilize a technique called
correlated negative curvature (CNC) (Daneshmand et al., 2018) to make a local improvement.

1.2 Paper Organization

In Section 2, we introduce some necessary conceptions of policy gradient and some standard assump-
tions in policy optimization. In Section 3, we formally define (ǫ,

√
ǫχ)-SOSP. Our main contribution
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lies in Section 4, where we provide the main result that presents the sample complexity of policy
gradient finding an (ǫ,

√
ǫχ)-SOSP, and we provide an overview of the proof technique. Related

works and future works are discussed in Section 5.

1.3 Notations

Let ‖ · ‖2 be the Euclidean norm of a vector in Rp. For a symmetric matrix A, we use λmin(A) and
λmax(A) as its minimum and maximum eigenvalue correspondingly. Let ‖A‖op denote the operator
norm of the matrix A; furthermore, according to Van Loan and Golub (1983), if A ∈ Rp×p is a
symmetric matrix, then ‖A‖op = max1≤i≤p{|λi|}, where {λi}pi=1 is the set of the eigenvalues of A.
We use A ≻ 0 to denote a positive definite matrix A. For a function J(·) : Rp → R, let ∇J and ∇2J
denote its gradient vector and Hessian matrix correspondingly. Let B2(o, r) be a p-dimensional ℓ2
ball with the centre o and radius r, i.e., B2(o, r) = {x ∈ Rp; ‖x− o‖2 ≤ r}. For any real number x,
⌈x⌉and ⌊x⌋ denote the nearest integer to x from above and below. We use Õ to hide polylogarithmic
factors in the input parameters, i.e., Õ(f(x)) = O(f(x) log(f(x))O(1)).

2 Policy Gradient Methods and Some Standard Assumptions

In this section, we introduce some necessary concepts of reinforcement learning, policy gradient and
some standard assumptions in policy optimization.

2.1 Reinforcement Learning

Reinforcement learning (Sutton and Barto, 2018) is often formulated as Markov decision processes
(MDP) M = (S,A, P,R, ρ0, γ), where S is the state space, A is the action space; P (s

′ |s, a) is the
probability of state transition from s to s

′
under playing the action a; R(·, ·) : S×A → [Rmin, Rmax]

is a bounded reward function, where Rmin, Rmax two positive scalars. ρ0(·) : S → [0, 1] is the initial
state distribution and the discount factor γ ∈ (0, 1).

The parametric policy πθ is a probability distribution over S × A with a parameter θ ∈ Rp, and
we use πθ(a|s) to denote the probability of playing a in state s. Let τ = {st, at, rt+1}t≥0 ∼ πθ
be a trajectory generated by the policy πθ, where s0 ∼ ρ0(·), at ∼ πθ(·|st), rt+1 = R(st, at) and
st+1 ∼ P (·|st, at). The state value function of πθ is defined as follows,

V πθ(s) = Eπθ

[ ∞∑

t=0

γtrt+1|s0 = s

]
,

where Eπθ
[·|·] denotes a conditional expectation on actions which are selected according to the policy

πθ. The advantage function of the policy πθ is defined as follows,

Aπθ(s, a) = Qπθ(s, a)− V πθ(s),

where Qπθ(s, a) is the state-action value function:

Qπθ(s, a) = Eπθ

[ ∞∑

t=0

γtrt+1|s0 = s, a0 = a

]
.

We use P πθ(st = s|s0) to denote the probability of visiting the state s after t time steps from the
initial state s0 by executing πθ, and

dπθ
s0
(s) =

∞∑

t=0

γtP πθ(st = s|s0)

3



is the (unnormalized) discounted stationary state distribution of the Markov chain (starting at s0)
induced by πθ. Furthermore, since s0 ∼ ρ0(·), we define

dπθ
ρ0
(s) = Es0∼ρ0(·)[d

πθ
s0
(s)]

as the discounted state visitation distribution over the initial distribution ρ0. Recall τ = {st, at, rt+1}t≥0 ∼
πθ, we define

J(πθ|s0) = Eτ∼πθ,s0∼ρ0(·)[R(τ)] = Es∼d
πθ
s0

(·),a∼πθ(·|s)[R(s, a)],

where R(τ) =
∑

t≥0 γ
trt+1, and J(πθ|s0) is “conditional” on s0 since we emphasize the trajectory τ

starting from s0. Furthermore, we define the expected return J(θ) =: Es0∼ρ0(·)[J(πθ|s0)] as follows,

J(θ) = Es∼d
πθ
ρ0

(·),a∼πθ(·|s)[R(s, a)] =

∫

s∈S
dπθ
ρ0
(s)

∫

a∈A
πθ(a|s)R(s, a)dads. (1)

The goal of policy-based reinforcement learning is to solve the following policy optimization problem:

max
θ∈Rp

J(θ). (2)

2.2 Policy Gradient Methods

The basic idea of policy gradient (Williams, 1992; Sutton et al., 2000) is to update the parameter
according to the direction with respect to the gradient of J(θ), i.e.,

θk+1 = θk + α∇̂J(θk), (3)

where α > 0 is step-size, ∇̂J(θk) is a stochastic estimator of policy gradient ∇J(θk). According to
Sutton et al. (2000), we present the well-known policy gradient theorem as follows,

∇J(θ) =

∫

s∈S
dπθ
ρ0
(s)

∫

a∈A
Qπθ(s, a)∇πθ(s, a)dads = Es∼d

πθ
ρ0

(·),a∼πθ(·|s) [Q
πθ(s, a)∇ log πθ(a|s)] ,

which provides a possible way to find the estimator of ∇J(θ). One issue that we should address is
how to estimate Qπθ(s, a) appears in the policy gradient theorem. A simple approach is to use a
sample return R(τ) to estimate Qπθ(s, a), i.e., we calculate the policy gradient estimator as follows,

g(τ |θ) =
∑

t≥0

∇ log πθ(at|st)R(τ). (4)

Replace ̂∇J(τ |θk) of (3) with g(τ |θk), we achieve the update rule of REINFORCE (Williams, 1992):

θk+1 = θk + αg(τ |θk). (5)

2.3 Fisher Information Matrix

For the policy optimization (1), we learn the parameter from the samples that come from an unknown
probability distribution. Fisher information matrix (Fisher, 1920; Kakade, 2002; Ly et al., 2017)
provides the information that a sample of data provides about the unknown parameter. According
to Kakade (2002); Bhatnagar et al. (2008), the Fisher information matrix F (θ) is positive definite,
i.e., there exists a constant ω > 0 s.t.,

F (θ) =:

∫

s∈S
dπθ
ρ0
(s)

∫

a∈A
∇ log πθ(a|s)[∇ log πθ(a|s)]⊤dsda ≻ ωIp, ∀ θ ∈ R

p, (6)

where Ip ∈ Rp×p is the identity matrix.
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2.4 Standard Assumptions

Assumption 1. For each pair (s, a) ∈ S ×A, for any θ ∈ Rp, and all components i, j, there exists
positive two constants 0 ≤ G,L,U < ∞ such that

(a) :
∣∣∇θi log πθ(a|s)

∣∣ ≤ G; (b) :
∣∣∣ ∂2

∂θi∂θj
log πθ(a|s)

∣∣∣ ≤ L; (c) :
∣∣∇θiπθ(a|s)

∣∣ ≤ U. (7)

Assumptions 1 is a standard condition in policy optimization, and it has be applied to several
recent policy gradient literatures (Castro and Meir, 2010; Pirotta et al., 2015; Papini et al., 2018;
Shen et al., 2019; Xu et al., 2020a). Assumption 1 is reasonable a condition since the widely used
policy classes such as Gaussian, softmax (Konda and Borkar, 1999), and relative entropy policy
(Peters et al., 2010) all satisfy (7). Recently, Zhang et al. (2019); Papini et al. (2019); Wang and Zou
(2020) have provided the details to check above policies satisfy Assumptions 1.

According to the Lemma B.2 of (Papini et al., 2018), Assumption 1 implies the expected return
J(θ) is ℓ-Lipschitz smooth, i.e., for any θ, θ

′ ∈ Rp, we have

‖∇J(θ)−∇J(θ
′
)‖2 ≤ ℓ‖θ − θ

′‖2, (8)

where ℓ = Rmaxh(hG2+L)
(1−γ) , h is a positive scalar that denotes the horizon of the trajectory τ . The

property (8) has been given as the Lipschitz assumption in previous works (Kumar et al., 2019;
Wang et al., 2020), and it has been also verified by lots of recent works with some other regularity
conditions (Zhang et al., 2019; Agarwal et al., 2019; Xu et al., 2020b).

Furthermore, according to the Lemma 4.1 of (Shen et al., 2019), Assumption 1 implies a property
of the policy gradient estimator as follows, for each τ ∼ πθ, we have

‖g(τ |θ) −∇J(θ)‖2 ≤
GRmax

(1− γ)2
=: σ. (9)

The result of (9) implies the boundedness of the variance of the policy gradient estimator g(τ |θ), i.e.,
Var(g(τ |θ)) = E[‖g(τ |θ)−∇J(θ)‖22] ≤ σ2. The boundedness of Var(g(τ |θ)) are also proposed as an
assumption in the previous works (Papini et al., 2018; Xu et al., 2019, 2020a; Wang et al., 2020).

Assumption 2 (Smoothness of Policy Hessian). The the expected return function J(θ) is χ-Hessian-
Lipschitz, i.e., there exists a constant 0 ≤ χ < ∞ such that for all θ, θ

′ ∈ Rp:

‖∇2J(θ)−∇2J(θ
′
)‖op ≤ χ‖θ − θ

′‖2. (10)

Assumption 2 requires that for the two near points, the Hessian matrix ∇2J(·) can not change
dramatically in the terms of operator norm. For RL, the parameter χ can be deduced by some
other regularity conditions, e.g., Zhang et al. (2019) provides an estimation of χ, see Appendix B.

3 Second-Order Stationary Point

Due to the non-concavity of J(θ), finding global maxima is NP-hard in the worst case. The best
one can hope is to convergence to stationary points. In this section, we formally define second-order
stationary point (SOSP). Furthermore, with the second-order information, we present Assumption
3 to make clear the maximal point that we mainly concern for policy optimization.

5



Definition 1 (Second-Order Stationary Point (Nesterov and Polyak, 2006) 1). For the χ-Hessian-
Lipschitz function J(·), we say that θ is a second-order stationary point if

‖∇J(θ)‖2 = 0 and λmax(∇2J(θ)) ≤ 0; (11)

we say θ is an (ǫ,
√
χǫ)-second-order stationary point if

‖∇J(θ)‖2 ≤ ǫ and λmax(∇2J(θ)) ≤ √
χǫ. (12)

The SOSP is a very important concept for the policy optimization (2) because it rules the saddle
points (whose Hessian are indefinite) and minimal points (whose Hessian are positive definite),
which is usually more desirable than convergence to a first-order stationary point (FOSP). Recently,
Shen et al. (2019); Xu et al. (2020a) introduce FOSP to measure the convergence of policy gradient
methods. As mentioned in Section 1, for policy optimization (2), an algorithm converges to a FOSP
is not sufficient to ensure that algorithm outputs a maximal point. While SOSP overcomes above
shortcomings, which is our main motivation to consider SOSP as a convergence criterion.

Assumption 3 (Structure of J(θ)). For any θ ∈ Rp, at least one of the following holds: (i)
‖∇J(θ)‖ ≥ ǫ; (ii) λmax(∇2J(θ)) ≥ √

ǫχ; (iii) θ nears a local maximal point θ⋆: there exists a
positive scalar ̺ such that θ falls in to the ball B2(θ⋆, ̺), and J(θ) is ζ-strongly concave on B2(θ⋆, ̺).

In the standard non-convex literature such as (Ge et al., 2015; Jin et al., 2017), the condition (ii) of
Assumption 3 is often called (ǫ, χ, ̺)-strict saddle. In this case, all the SOSP are local maxima and
hence convergence to second-order stationary points is equivalent to convergence to local maxima.
In the following three-states MDP (see Figure 1), we verify that the Assumption 3 holds on policy
optimization.

s0 s1s2

left right

p1, right

R1 = 1

p2, left

R2 = 1

up, p3, R3 = 0

Figure 1: Three-States MDP.

Example 1. In this deterministic MDP, the states s1 and s2 equip the action space A = {right, left},
while s0 equips an additional action up. The policy πθ(·|·) with a parameter θ = (θ1, θ2)

⊤ ∈ R2, Let
Co =: [0, 1]× [0, 1], if θ ∈ Co, we define πθ(right|s0) =: p1 =

1√
2π
(1− θ21 + θ22); if θ /∈ Co, we define

Gaussian policy πθ(left|s0) =: p2 =
1√
2π
exp

{
− (2−‖θ‖22)

2

}
; otherwise, πθ(up|s0) =: p3 = 1−p1−p2.

Then J(θ) = p1R1 + p2R2 + p3R3, i.e.,

J(θ) =





1√
2π
(1− θ21 + θ22), θ ∈ Co

1√
2π
exp

{
− (2−‖θ‖22)

2

}
, θ /∈ Co.

(13)

The function J(θ) (13) satisfies Assumption 3. Since the origin (0, 0) ∈ Co is a saddle point of J(θ),
and λmax(∇2J(θ)|(0,0)) = 1, thus the point (0, 0) satisfies strict saddle point property. Besides, on
the complementary space of Co, i.e., R2 − Co, J(θ) is a strongly concave function.

1Recall problem (2) is a maximization problem, thus this definition of SOSP is slightly different from the mini-
mization problem minx f(x), where it requires ‖∇f(x)‖2 ≤ ǫ and λmin(∇2f(x)) ≥ 0. Similarly, its (ǫ,

√
χǫ)-SOSP

requires ‖∇f(x)‖2 ≤ ǫ and λmin(∇2f(x)) ≥ −√
χǫ.
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4 Main Result and Technique Overview

Our contribution lies in this section. Theorem 1 presents the sample complexity of policy gradient
algorithm (5) finding an (ǫ,

√
χǫ)-SOSP. Section 4.1 provides an overview of the proof technique;

Section 4.1.1 provides all the key steps, Section 4.1.2 provides a sketch of the proof of Theorem 1.

Theorem 1. Under Assumption 1-3, consider {θk}k≥0 generated by (5), and ι is defined in (20).

For a small enough step-size α such that α ≤ min

{
ǫ2

2
√
χǫR2

minω
2
,

2ǫ2

(ǫ2 + σ2)ℓ

}
= O(ǫ2), the iteration

(5) returns an (ǫ,
√
χǫ)-SOSP with probability at least 1− δ− δ log(1

δ
) = 1− Õ(δ) after the times of

K =

⌈
6Rmax

α2(1− γ)ι2
√
χǫ

log
1

δ

⌉
+ 1 = O

(
ǫ−

9
2

(1− γ)
√
χ
log

1

δ

)
.

Remark 1. Theorem 1 illustrates that policy gradient algorithm (5) needs a cost of Õ(ǫ−
9
2 ) to find

an (ǫ,
√
χǫ)-SOSP. To the best of our knowledge, Zhang et al. (2019) firstly consider to introduce

SOSP to measure the sample complexity of policy-based RL. Zhang et al. (2019) propose a modified
random-horizon policy gradient (MRPG) algorithm, and they show that MRPG needs at least a cost

of O
(
ǫ−9χ

3
2
1
δ
log 1

ǫχ

)
= Õ(ǫ−9) to find an (ǫ,

√
χǫ)-SOSP. Clearly, result of Theorem 1 improves

the sample complexity of Zhang et al. (2019) significantly from Õ(ǫ−9) to Õ(ǫ−
9
2 ). Additionally,

compared to Zhang et al. (2019), our analysis does not invoke a geometric distribution restriction on
the horizon. In the real work, the horizon of a trajectory only depends on the simulated environment,
it is not necessary to draw a horizon from a geometric distribution, i.e., our result is more practical.

4.1 Technique Overview

Recall that an (ǫ,
√
χǫ)-SOSP requires a point has a small gradient, and whose Hessian matrix does

not have a significantly positive eigenvalue, which inspires us to consider an idea that decomposes
the parameter space Rp into three non-intersected regions, and then analyzing them separately.

❶ Case I: Non-Stationary Region. In this case, we consider the region with large gradient, i.e.,

L1 = {θ ∈ R
p : ‖∇J(θ)‖2 ≥ ǫ}; (14)

❷ Case II: Around Saddle Point. We consider the region where the norm of the policy gradient
is small , while the maximum eigenvalue of the Hessian matrix ∇2J(θ) is larger than zero:

L2 = {θ ∈ R
p : ‖∇J(θ)‖2 ≤ ǫ} ∩ {θ ∈ R

p : λmax(∇2J(θ)) ≥ √
χǫ}; (15)

❸ Case III: Local Optimal Region. In this case, we consider the region L3 = Rp − (L1 ∪ L2):

L3 = {θ ∈ R
p : ‖∇J(θ)‖2 ≤ ǫ} ∩ {θ ∈ R

p : λmax(∇2J(θ)) ≤ √
χǫ}. (16)

It is noteworthy that the local optimal region, i.e., L3 is the desirable region where we expect
policy gradient algorithm converges to it with high probability. Before we provide the formal proof,
in Section 4.1.1, we present three separate propositions to make local improvement on above three
regions correspondingly. The main challenge occurs on region L2, where we utilize a technique called
correlated negative curvature (CNC) (Daneshmand et al., 2018) to make a local improvement.
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4.1.1 Local Improvement on Each Case

Proposition 1 (Local Improvement on L1). Under Assumption 1-2. The sequence {θk}k≥0 gener-

ated according to (5). If a point θk ∈ L1, let α < min

{
2ǫ2

(ǫ2 + σ2)ℓ
, 2
ℓ

}
= O(ǫ−2), then we have

E
[
J(θk+1)

]
− J(θk)

(a)

≥
(
α− ℓα2

2

)
‖∇J(θk)‖22 −

ℓα2σ2

2

(b)

≥ 1

2
αǫ2. (17)

We provide its proof in Appendix C. Proposition 1 shows that when the gradient is large, the
expected return J(θ) increases in one step. It is noteworthy that the step-size plays an important
role in achieving the result of (17). Concretely, for a positive scalar α− ℓα2/2 (i.e., which requires
α < 2/ℓ), Eq.(a) of (17) guarantees the desired increase whenever the norm of the policy gradient
is large enough. At the same time, when considering the lower threshold value ǫ of the norm of
the policy gradient in the region L1, the second term of (17) achieves at least αǫ2 − ℓα2(ǫ2 + σ2)/2.
Thus, to make a clear improvement, the condition (b) requires step-size α should satisfy α <
2ǫ2/(ǫ2 + σ2)ℓ.

Proposition 2 (Local Improvement on L2). Under Assumption 1-2, consider the sequence {θk}k≥0

generated by (5). If a point θk falls in to L2, there exists a positive scalar ι (20), and κ̂0 such that

κ̂0 =:

⌊
log
(
1/(1 −√

ασH0)
)

log(1 + α
√
χǫ)

⌋
= O(ǫ−

1
2 ), (18)

where σH0 =
2p

√
phRmax(hG2+L)

1−γ
, then after at most j ≤ κ̂0 steps, we have

E[J(θk+j)]− J(θk) ≥ α2ι2
√
χǫ. (19)

Proposition 2 illustrates that even a point gets stuck in the region thar nears a saddle point, policy
gradient method will ensure an increase in the value of J(θ) within at most O(ǫ−

1
2 ) steps. We

provide proof of Proposition 2 in Appendix E. The proof is very technical, the following correlated
negative curvature (CNC) condition (Daneshmand et al., 2018) plays a crucial role in achieving the
result of (19). Concretely, let up be the unit eigenvector corresponding to the maximum eigenvalue
of ∇2J(θ), CNC ensures the second moment of the projection of policy gradient estimator g(τ |θ)
along the direction up is uniformly bounded away from zero, i.e., there exists a positive scalar ι s.t.,

CNC : E[〈g(τ |θ), up〉2] ≥ ι2, ∀θ ∈ R
p. (20)

We provide (20) in the Discussion 1 of Appendix E.8. CNC shows that the perturbation caused by
a stochastic policy gradient estimator g(τ |θ) is guaranteed to take an increase in the value J(θ).

Proposition 3. Under Assumption 1-3, consider the sequence {θk}k≥0 generated by (5). For any
δ ∈ (0, 1), θ⋆ satisfies Assumption 3, let the step-size α and the stopping time κ0 statisfy

α ≤ min

{
δ,
1

ζ
,
ζ

ℓ2
,
ζ̺2

3σ2

}
, α log

1

α
≤ 2ζ̺4

27
(
G2R2

max/(1− γ)2 + ζ̺2 + σ2
)2 , κ0 =

⌊ 1

α2
log

1

δ

⌋
,

and if some iteration θk falls into the ball B2(θ⋆,
√
3
3 ̺) ⊂ B2(θ⋆, ̺), i.e., ‖θk − θ⋆‖22 ≤ 1

3̺
2. Then,

P
(∥∥θk+j − θ⋆

∥∥
2
≤ ̺
)
≥ 1− δ log

1

δ
, ∀ j ∈ [0, κ0 − 1].

We provide its proof in Appendix D. Proposition 3 illustrates that once an iteration gets sufficiently
close to a local optimum θ⋆, it can get trapped in the neighborhood of θ⋆ for a really long time.
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4.1.2 Proof Sketch of Theorem 1

Proof. Our proof contains three steps.

1. Firstly, we will prove that within

⌈
6Rmax

α2(1− γ)ι2
√
χǫ

⌉
steps, with probability at least

1

2
, one

iteration falls into L3. Let above procedure lasts

⌈
log

1

δ

⌉
steps, according to the inclusion-

exclusion formula of probability: after Ko =

⌈
6Rmax

α2(1− γ)ι2
√
χǫ

log
1

δ

⌉
steps, with probability

1− δ, one of {θk}k≥0 falls into L3.
2. Secondly, Proposition 3 shows that once an iteration enters the region L3, the iteration gets

trapped there for at least κ0 steps with probability 1− δ log
1

δ
.

3. Finally, let K ∈ (Ko +1,Ko + κ0), combining above two results, the output θK falls into the

region L3 with probability at least 1− (δ + δ log
1

δ
), which concludes the result of Theorem 1.

Now, we only need to prove: starting from any point, within

⌈
6Rmax

α2(1− γ)ι2
√
χǫ

⌉
steps, with proba-

bility at least
1

2
, one of {θk}k≥0 falls into L3.

We define a stochastic process {ςk}k≥0 (ς0 = 0) to trace the numbers of samples,

ςk+1 =

{
ςk + 1 if θςk ∈ L1 ∪ L3

ςk + κ̂0 if θςk ∈ L2,

where κ̂0 is defined in (18). Let β = ι2
√
χǫ, we can rewrite the results of Proposition 1-2 as follows,

E[J(θςk+1
)− J(θςk)|θςk ∈ L1]

(17)
≥ 1

2
αǫ2, E[J(θςk+1

)− J(θςk)|θςk ∈ L2]
(19)
≥ α2β. (21)

Putting the results of (21) together, let α2β ≤ 1
2αǫ

2, i.e., α ≤ ǫ2

2β ,we have

E[J(θςk+1
)− J(θςk)|θςk 6∈ L3] ≥ α2βE[(ςk+1 − ςk)|θςk 6∈ L3]. (22)

We define the event Ek

Ek =

k⋂

j=0

{
j : θςj 6∈ L3

}
.

Let 1A denote indicator function, where if event A happens, 1A = 1, otherwise 1A = 0, then

E[J(θςk+1
)1Ek+1

− J(θςk)1Ek ] =E[J(θςk+1
)(1Ek+1

− 1Ek)] + E[(J(θςk+1
)− J(θςk))1Ek ]

(21)
≥ − Rmax

1− γ
(P(Ek+1 − Ek)) + α2βE[ςk+1 − ςk|1Ek ]P(Ek), (23)

where we use the boundedness of J(θ) ≥ −Rmax

1− γ
.

9



Summing the above expectation (23) over k, then

E[J(θςk+1
)1Ek+1

]− J(θ0) = −Rmax

1− γ
(P(Ek+1)− P(E0)) + α2β

k∑

j=0

(
E[ςj+1]P(Ej)− E[ςj]P(Ej)

)

≥ −Rmax

1− γ
+ α2β

k∑

j=0

(
E[ςj+1]P(Ej+1)− E[ςj]P(Ej)

)
(24)

= −Rmax

1− γ
+ α2βE[ςk+1]P(Ek+1), (25)

where Eq.(24) holds since P(Ek+1) − P(E0) ≤ 1; Ej+1 ⊂ Ej implies P(Ej+1) ≤ P(Ej); and Eq.(25)
holds since ς0 = 0.

Finally, since E[J(θςk+1
)1Ek+1

− J(θςk)1Ek ] ≤
2Rmax

1− γ
, from the results of (25), if

E[ςk+1] ≥
6Rmax

α2(1− γ)β
=

6Rmax

α2(1− γ)ι2
√
χǫ

,

then P[Ek+1] ≤
1

2
. This concludes the proof.

5 Related Work and Future Work

Compared to the tremendous empirical works, theoretical results of policy gradient methods are
relatively scarce. In this section, we compare our result with current works in the following discussion.
For clarity, we have presented the complexity comparison to some results in Table 1. Furthermore,
we discuss future works to extend our proof technique to other policy gradient methods.

5.1 First-Order Measurement

According to Shen et al. (2019), REINFORCE needs O(ǫ−4) random trajectories to achieve the ǫ-FOSP,
and no provable improvement on its complexity has been made so far. Xu et al. (2019) also notice the
order of sample complexity of REINFORCE and GPOMDP (Baxter and Bartlett, 2001) reaches O(ǫ−4).

With an additional assumption Var
[∏

i≥0

πθ0(ai|si)
πθt(ai|si)

]
,Var[g(τ |θ)] < +∞, Papini et al. (2018) show

that the SVRPG needs sample complexity of O(ǫ−4) to achieve the ǫ-FOSP. Later, under the same
assumption as (Papini et al., 2018), Xu et al. (2019) reduce the sample complexity of SVRPG to

O(ǫ−
10
3 ). Recently, Shen et al. (2019), Yang et al. (2019a) and Xu et al. (2020a) introduce stochas-

tic variance reduced gradient (SVRG) techniques (Johnson and Zhang, 2013; Nguyen et al., 2017a;
Fang et al., 2018) to policy optimization, their new methods improve sample complexity to O(ǫ−3)
to achieve an ǫ-FOSP. Pham et al. (2020) propose ProxHSPGA that is a hybrid stochastic policy gra-
dient estimator by combining existing REINFORCE estimator with the adapted SARAH (Nguyen et al.,
2017a) estimator. Pham et al. (2020) show ProxHSPGA also need O(ǫ−3) trajectories to achieve the
ǫ-FOSP. To compare clearly, we summarize more details of the comparison in Table 1.

5.2 Second-Order Measurement

As mentioned in the previous section, for RL, an algorithm converges to a FOSP is not sufficient
to ensure that algorithm outputs a maximal point, which is our main motivation to consider SOSP

10



Algorithm Conditions Guarantee Complexity

REINFORCE (Williams, 1992) Assumption 1 First-Order O(ǫ−4)

GPOMDP

(Baxter and Bartlett, 2001)
Assumption 1 First-Order O(ǫ−4)

SVRPG

(Papini et al., 2018)

Assumption 1

Var
[∏

i≥0
πθ0

(ai|si)
πθt

(ai|si)

]
< +∞ First-Order O(ǫ−4)

SVRPG

(Xu et al., 2019)

Assumption 1

Var
[∏

i≥0
πθ0

(ai|si)
πθt

(ai|si)

]
< +∞ First-Order O(ǫ−

10
3 )

HAPG (Shen et al., 2019) Assumption 1 First-Order O(ǫ−3)

VRMPO (Yang et al., 2019a) Assumption 1 First-Order O(ǫ−3)

SRVR-PG
(Xu et al., 2020a)

Assumption 1

Var
[∏

i≥0
πθ0

(ai|si)
πθt

(ai|si)

]
< +∞ First-Order O(ǫ−3)

ProxHSPGA

(Pham et al., 2020)

Assumption 1

Var
[∏

i≥0
πθ0

(ai|si)
πθt

(ai|si)

]
< +∞ First-Order O(ǫ−3)

MRPG (Zhang et al., 2019) Assumption 1 and Eq.(6) Second-Order Õ
(
ǫ−9
)

Our work Assumption 1-3 Second-Order Õ
(
ǫ−

9
2

)

Table 1: Complexity comparison, where the result of first-order requires ‖∇J(θ)‖2 ≤ ǫ, section-order
requires an additional condition λmax(∇2J(θ)) ≤ √

χǫ.

to measure the convergence of policy gradient method. To the best of our knowledge, Zhang et al.
(2019) firstly introduce SOSP to RL to measure the sample complexity of policy gradient methods.
Zhang et al. (2019) propose MRPG that needs at least Õ(ǫ−9) samples, which is worse than our result

Õ(ǫ−
9
2 ). We have discussed this comparison in the previous Remark 1.

Additionally, it is noteworthy that although we are all adopting the CNC technique to ensure the
local improvement on saddle point region, our technique is different from Zhang et al. (2019) at least
from two aspects: Firstly, our CNC condition is more general since we consider the fundamental
policy gradient estimator (5) and our analysis can be extended to generalized to extensive policy
optimization algorithms; while the CNC result of Zhang et al. (2019) is limited in their proposed al-

gorithm MRPG; Secondly, on the region L2, our result shows that within at most O(ǫ−
1
2 ) steps, policy

gradient ensures an increase in the value of J(θ). While, Zhang et al. (2019) require Ω(ǫ−5 log 1
ǫ
),

which is the main reason why our analysis to achieve a better sample complexity.

5.3 Future Work

In this paper, we mainly consider Monte Carlo gradient estimator (4), the technique of proof can
be generalized to extensive policy gradient methods such as replacing R(τ) with state-action value
function Qπ(st, at), advantage function Aπ(st, at), baseline function R(τ)−V π(st, at), and temporal
difference error rt+1 + γV π(st+1, at+1)− V π(st, at).

Our result of Õ(ǫ−
9
2 ) to achieve (ǫ,

√
ǫχ)-SOSP is still far from the best-known ǫ-FOSP result O(ǫ−3).

In theory, Allen-Zhu and Li (2018) and Xu et al. (2018) independently show that finding a SOSP
is not much harder than FOSP. Recently, in non-convex optimization, Ge et al. (2019) show that
with a simple variant of SVRG, we can find a SOSP that almost matches the known the first-order
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stationary points.

This provides a motivation that we can introduce some latest developments such as (Du et al., 2017;
Daneshmand et al., 2018; Jin et al., 2018; Zhou et al., 2018a,b; Ge et al., 2019; Fang et al., 2019) to
give some fresh understanding to RL algorithms. Besides, it will be also interesting to rethink the
sample complexity of SOSP of the works (Papini et al., 2018; Shen et al., 2019; Yang et al., 2019a;
Pham et al., 2020), where they have proposed SVRG version of policy gradient methods.

It is noteworthy that we don’t consider the actor-critic type algorithms. Recently Yang et al.
(2019b); Kumar et al. (2019); Agarwal et al. (2019); Xu et al. (2020b); Wang et al. (2020) have
analyzed the complexity of actor-critic or natural actor-critic algorithms, and it will be interesting
to rethink the sample complexity of SOSP of actor-critic or natural actor-critic algorithms .

6 Conclusion

In this paper, we provide the sample complexity of the policy gradient method finding second-order
stationary points. Our result shows that policy gradient methods converge to an (ǫ,

√
ǫχ)-SOSP

at a cost of Õ(ǫ−
9
2 ), which improves the the best-known result of by a factor of Õ(ǫ−

9
2 ). Besides,

we think the technique of proof can be potentially generalized to extensive policy optimization
algorithms, and give some fresh understanding to the existing algorithms.
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A Table of Notations

For convenience of reference, we list key notations that have be used in this paper.

S : The set of states.
A : The set of actions.

P (s
′ |s, a) : The probability of state transition from s to s

′
under playing the

action a.
ρ0 : ρ0(·) : S → [0, 1] is the initial state distribution.
γ : The discount factor, and γ ∈ (0, 1).
τ : The trajectory generated according to πθ, i.e.,τ =

{st, at, rt+1}t≥0 ∼ πθ.
P πθ(st|s0) : The probability of visiting the state st after t time steps from the

initial state s0 by executing πθ.
dπθ
s0
(s) : The (unnormalized) discounted stationary state distribution of

the Markov chain (starting at s0) induced by πθ, dπθ
s0
(s) =∑∞

t=0 γ
tP πθ(st = s|s0).

dπθ
ρ0
(s) : dπθ

ρ0
(s) = Es0∼ρ0(·)[d

πθ
s0
(s)]

J(θ) : The performance objective, defined in (1).
g(τ |θ) : An policy gradient estimator g(τ |θ) =

∑∞
t=0 ∇ log πθ(at|st)R(τ),

defined in (4).
F (θ) : Fisher information matrix defined in (6).

ω : A positive scaler defined in (6).
G,L,U : Two positive scalers defined in (7).

ℓ : Lipschitz parameter of ∇J(θ), and it is defined in (8).
σ : An upper-bound of Var(g(τ |θ)), and it is defined in (9).
χ : Hessian-Lipschitz parameter χ presented in (10).

B Some Lemmas

Lemma 1 (Azuma’s Inequality). Let {Zt}t∈N be a martingale with respect to the filtration: F0 ⊂
F1 · · · ⊂ Ft ⊂ · · · . Assume that there are predictable processes {At}t∈N and {Bt}t∈N (i.e., At, Bt ∈
Ft−1) and constants 0 < ct < +∞ such that: for all t ≥ 1, almost surely,

At ≤ Zt − Zt−1 ≤ Bt and Bt −At ≤ ct.

Then, for all δ > 0,

P[Zt − Z0 ≥ δ] ≤ exp

(
− 2δ2∑t

i=0 c
2
i

)
.

For the proof of Azuma’s inequality, please refer to http://www.math.wisc.edu/~roch/grad-prob/gradprob-notes20.pdf.

The following Lemma 2 illustrates the difference of the performance between two policies and it is
helpful throughout this paper.

Lemma 2. ((Kakade and Langford, 2002)) For any policy π, π̃, and any initial state s0 ∈ S, we
have

V π(s0)− V π̃(s0) = Es∼dπs0
(·),a∼π(·|s)[A

π̃(s, a)]. (26)
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Lemma 3 ((Zhang et al., 2019)). Under Assumption 1. With an additional condition as follows,

‖∇2 log πθ1(a|s)−∇2 log πθ2(a|s)‖2 ≤ W‖θ1 − θ2‖2,

then we have estimate of χ such that

‖∇2J(θ)−∇2J(θ
′
)‖op ≤ χ‖θ − θ

′‖2,

where

χ =:
RmaxGL

(1− γ)2
+

RmaxG
3(1 + γ)

(1− γ)3
+

RmaxG

1− γ
max

{
L,

γG2

1− γ
,
W

G
,

Lγ

1− γ
,
G(1 + γ) + Lγ(1− γ)

1− γ2

}
.

Remark 2. Lemma 3 illustrates, with some other regularity conditions, we can give a concrete
estimate of the parameter χ that satisfies Assumption 2. This Assumption 2 significantly simplifies
the theory analysis, but it could be removed by other regularity conditions.
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C Proof of Proposition 1

Proposition 1 Under Assumption 1-3. The sequence {θk}k≥0 generated according to (5). If a point

θk ∈ L1, i.e.,
∥∥∥∇J(θk)

∥∥∥
2
≥ ǫ, and let α <

{ 2ǫ2

(ǫ2 + σ2)ℓ
,
2

ℓ

}
, then after one update, the following

holds

E

[
J(θk+1)

]
− J(θk) ≥

(
α− ℓα2

2

)∥∥∥∇J(θk)
∥∥∥
2

2
− ℓα2σ2

2

≥ αǫ2 − 1

2
ℓα2(ǫ2 + σ2) > 0.

Proof. (of Proposition 1)

Recall for each k ∈ N, τk ∼ πθk , to simplify expression, we introduce a notation as follows,

g(θk) =: g(θk|τk) =
∑

t≥0

∇θ log πθ(at|st)R(τk)|θ=θk

Then, the update (5) can be rewritten as follows,

θk+1 = θk + αg(θk).

Let

ξk = g(θk)−∇J(θk), (27)

By the fact ∇J(θk) = E[g(θk)], we have E[ξk] = 0.

By the result of (8), i.e., for each θ, θ
′
,
∥∥∇J(θ)−∇J(θ

′
)
∥∥
2
≤ ℓ
∥∥θ − θ

′∥∥
2
, which implies

|J(θ′
)− J(θ)− 〈∇J(θ), θ

′ − θ〉| ≤ ℓ

2

∥∥θ − θ
′∥∥2

2
. (28)

Then, we have

J(θk+1)− J(θk) ≥ 〈∇J(θk), θk+1 − θk〉 −
ℓ

2

∥∥θk − θk+1

∥∥2
2
,

which implies

E
[
J(θk+1)

]
− J(θk) ≥ ∇J(θk)

⊤
E
[
θk+1 − θk

]
− ℓ

2
E
[∥∥θk − θk+1

∥∥2
2

]

= ∇J(θk)
⊤
E
[
αg(θk)

]
− ℓα2

2
E
[∥∥ξ0 +∇J(θk)

∥∥2
2

]

= ∇J(θk)
⊤
E
[
αg(θk)

]
− ℓα2

2
E
[∥∥ξ⊤0 ξ0 + 2ξ⊤0 ∇J(θk) +∇J(θk)

⊤∇J(θk)
]

=
(
α− ℓα2

2

)∥∥∇J(θk)
∥∥2
2
− ℓα2

2
E
[

ξ⊤0 ξ0︸︷︷︸
=
∥∥∇J(θk)−g(θk)

∥∥2

2

]

(9)

≥
(
α− ℓα2

2

)∥∥∇J(θk)
∥∥2
2
− ℓα2σ2

2

≥
(
α− ℓα2

2

)
ǫ2 − ℓα2σ2

2
= αǫ2 − 1

2
ℓα2ǫ2 − 1

2
ℓα2σ2,
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Solving
1

2
αǫ2 − 1

2
ℓα2ǫ2 − 1

2
ℓα2σ2 > 0, we have α <

ǫ2

(ǫ2 + σ2)ℓ
, then we have

E
[
J(θk+1)

]
− J(θk) ≥

1

2
αǫ2.

This concludes the proof.
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D Proof of Proposition 3

In this section we provide the details of the proof of Proposition 3. We need the following Lemma
4, Lemma 5 and Lemma 6 to show the result of Proposition 3.

Proposition 3 Under Assumption 1-3, Consider the sequence {θk}k≥0 generated by (5). For any
δ ∈ (0, 1), let the step-size α and the stopping time κ0 statisfy

α ≤ min
{
δ,
1

ζ
,
ζ

ℓ2
,
ζ̺2

3σ2

}
, α log

1

α
≤ 2ζ̺4

27
(G2R2

max

(1− γ)2
+ ζ̺2 + σ2

)2 , κ0 =
⌊ 1

α2
log

1

δ

⌋
,

and if some iteration θk falls into the ball B2(θ⋆,

√
3

3
̺) ⊂ B2(θ⋆, ̺), i.e.,

∥∥θk − θ⋆
∥∥2
2
≤ 1

3
̺2. Then,

with probability at least 1− δ log
1

δ
, for all j ∈ [0, κ0 − 1], we have

∥∥θk+j − θ⋆
∥∥
2
≤ ̺, i.e.,

P

(∥∥θk+j − θ⋆
∥∥
2
≤ ̺
)
≥ 1− δ log

1

δ
.

Recall for each k ∈ N, τk ∼ πθk , to simplify expression, we introduce a notation as follows,

g(θk) =: g(θk|τk) =
h∑

t=0

∇θ log πθ(at|st)R(τk)|θ=θk

Then, the update (5) can be rewritten as follows,

θk+1 = θk + αg(θk).

Lemma 4 (Boundedness of the near iteration). Consider the sequence {θk}k∈N generated according
to (5),i.e., θk+1 = θk + αg(θk). Then,

∥∥θk+1 − θk
∥∥
2
≤ α

∥∥g(θk+1)− g(θk)
∥∥
2
. (29)

Lemma 4 is a direct result of Lemma 2 in (Ghadimi et al., 2016). We omit its proof.

We use E[k:k+t] to denote the event that the element of the sequence {θj}k+t
j=k falls into the ball

B2(θ⋆, ̺), and use κ0 to denote its stopping time, i.e.,

E[k:k+t] =
t⋂

j=0

{
θk+j :

∥∥θk+j − θ⋆
∥∥
2
≤ ̺
}
,

κ0 = inf
j≥0

{
j :
∥∥θk+j − θ⋆

∥∥
2
> ̺
}
. (30)

From the definition of (30), we notice two following basic facts:

❶ If t > κ0, the event E[k:k+t] never happens, i.e., E[k:k+t] = ∅ after the time κ0; For each 0 ≤ j < κ0,
the point θk+j falls into the ball B2(θ⋆, ̺).

❷ For each t, we have E[k:k+t+1] ⊂ E[k:k+t].

17



Lemma 5. We consider the term Zj = max
{
(1 − αζ)−j

(∥∥θk+j − θ⋆
∥∥2
2
− ασ2

ζ

)
, 0
}
, then for each

j ∈ [0, κ0 − 1], the following holds

|Zj+1 − Zj | ≤ (1− αζ)−(j+1)
(
α22G2R2

max/(1− γ)2 + αζ̺2 + α2σ2
)

︸ ︷︷ ︸
=:cj+1

, (31)

i.e., we have |Zj+1 − Zj| ≤ cj+1.

Lemma 5 illustrates the boundedness of Zj+1−Zj, which is helpful for us to use Azuma’s inequality
to achieve more refined results later.

Lemma 6. Consider the sequence {θk}k∈N generated according to (5),i.e., θk+1 = θk + αg(θk).
Then, for the term θk+κ0 − θ⋆, the following holds

P

(∥∥θk+κ0−1 − θ⋆
∥∥2
2
≥ ̺2

)
≤ α2δ.

D.1 Some Preliminary Results

Before we give the details of the proof of Lemma 5, Lemma 6 and Proposition 3, we present some
preliminary results.

Let

ξk = g(θk)−∇J(θk), (32)

By the fact ∇J(θk) = E[g(θk)], we have E[ξk] = 0.

We use F[k,k+t] = σ(ξk, · · · , ξk+t) to denote the σ-field generated by the information from time k to
k + t: {ξk, · · ·, ξk+t}.

Recall the update rule (5), let αk = α ≤ ζ

ℓ2
, we analyze the (k + κ0)-th iteration as follows,

θk+κ0 = θk+κ0−1 + αg(θk+κ0−1)

=θk+κ0−1 + α
(
g(θk+κ0−1)−∇J(θk+κ0−1)︸ ︷︷ ︸

=ξk+κ0−1;Eq.(32)

+∇J(θk+κ0−1)
)
,

=θk+κ0−1 + α
(
∇J(θk+κ0−1) + ξk+κ0−1

)
. (33)

Under Assumption 3, J(θ) is ζ-strongly concave in B(θ⋆, ̺), i.e.,

∇J(θ
′
) ≤ J(θ) +∇J(θ)⊤(θ

′ − θ)− ζ

2
‖θ′ − θ‖22, ∀ θ, θ

′ ∈ B2(θ⋆, ̺). (34)

Since θk falls into the ball B2(θ⋆,

√
3

3
̺) ⊂ B2(θ⋆, ̺), recall κ0 = infj≥0

{
j :
∥∥θk+j − θ⋆

∥∥
2
> ̺

}
, thus

the point θk+κ0−1 also falls into the ball B(θ⋆, ̺), according to (34), we have

J(θ⋆)− J(θk+κ0−1) ≤ ∇J(θk+κ0−1)
⊤(θ⋆ − θk+κ0−1)−

ζ

2

∥∥θk+κ0−1 − θ⋆
∥∥2
2
,

J(θk+κ0−1)− J(θ⋆) ≤ ∇J(θ⋆)
⊤

︸ ︷︷ ︸
=0

(θk+κ0−1 − θ⋆)−
ζ

2

∥∥θ⋆ − θk+κ0−1

∥∥2
2
,
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which implies

ζ
∥∥θk+κ0−1 − θ⋆

∥∥2
2
≤ ∇J

(
θk+κ0−1

)⊤(
θ⋆ − θk+κ0−1

)
. (35)

Under Assumption 1, recall the result of (8), we have

∥∥∇J(θk+κ0−1)−∇J(θ⋆)
∥∥
2
=
∥∥∇J(θk+κ0−1)

∥∥
2
≤ ℓ
∥∥θk+κ0−1 − θ⋆

∥∥
2
. (36)

D.2 Proof of Lemma 5

Proof. (of Lemma 5).

Recall F[k,k+t] = σ(ξk, · · · , ξk+t) is the σ-field generated by the information from time k to k + t.
Firstly, we turn to analyze the expected gap between θk+κ0 and θ⋆ as follows,

E

[∥∥θk+κ0 − θ⋆
∥∥2
2

∣∣∣F[k:k+κ0−1]

]

(33)
= E

[∥∥∥θk+κ0−1 + α
(
∇J(θk+κ0−1) + ξk+κ0−1

)
− θ⋆

∥∥∥
2

2

∣∣∣F[k:k+κ0−1]

]

=
∥∥θk+κ0−1 − θ⋆

∥∥2
2
+ α2

E

[∥∥∥ξk+κ0−1

∥∥∥
2

2

∣∣∣F[k:k+κ0−1]

]

︸ ︷︷ ︸
≤σ2;Eq.(9)

+ α2
∥∥∇J(θk+κ0−1)

∥∥2
2︸ ︷︷ ︸

(36)

≤ ℓ2
∥∥θk+κ0−1−θ⋆

∥∥2

2

+2α 〈∇J(θk+κ0−1), θk+κ0−1 − θ⋆〉︸ ︷︷ ︸
(35)

≤ −ζ

∥∥θk+κ0−1−θ⋆

∥∥2

2

≤(1 + α2ℓ2 − 2αζ)
∥∥θk+κ0−1 − θ⋆

∥∥2
2
+ α2σ2 (37)

≤(1− αζ)
∥∥θk+κ0−1 − θ⋆

∥∥2
2
+ α2σ2, (38)

Eq.(38) holds since α ≤ ζ

ℓ2
.

Furthermore, rearranging Eq.(38), we have

E

[∥∥∥θk+κ0 − θ⋆

∥∥∥
2

2

∣∣∣F[k:k+κ0−1]

]
− ασ2

ζ
≤ (1− αζ)

(∥∥θk+κ0−1 − θ⋆
∥∥2
2
− ασ2

ζ

)
. (39)

Now, , we define a sequence {Zj}κ0
j=0 with its element as follows,

Zj = max

{
(1− αζ)−j

(∥∥θk+j − θ⋆
∥∥2
2
− ασ2

ζ

)
, 0

}
; 0 ≤ j ≤ κ0. (40)

Since κ0 = infj≥0

{
j :
∥∥θk+j − θ⋆

∥∥
2
> ̺

}
, recall E[k:k+t] = ∩t

j=0{θk+j :
∥∥θk+j − θ⋆

∥∥
2
≤ ̺}, which

implies 1E[k:k+j]
= 1, for each j ∈ [0, κ0 − 1]. Thus,

Zj+11E[k:k+j]
= Zj+1. (41)

Furthermore, from the result of (39), Zj+11E[k:k+j]
is a a super-martingale, i.e.,

E

[
Zj+11E[k:k+j]

]
≤ Zj1E[k:k+j−1]

. (42)
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Let’s bound on the term |Zj+1 − Zj|
(41)
= |Zj+11E[k:k+j]

−Zj1E[k:k+j−1]
|, for each 0 ≤ j ≤ κ0 − 1, the

following holds

|Zj+1 − Zj |

≤
∣∣∣∣∣(1− αζ)−(j+1)

((∥∥θk+j+1 − θ⋆
∥∥2
2
− ασ2

ζ

)
− (1− αζ)

(∥∥θk+j − θ⋆
∥∥2
2
− ασ2

ζ

))∣∣∣∣∣

= (1− αζ)−(j+1)
∣∣∣
∥∥θk+j+1 − θ⋆

∥∥2
2
−
∥∥θk+j − θ⋆

∥∥2
2
+ αζ

∥∥θk+j − θ⋆
∥∥2
2
− α2σ2

∣∣∣

≤ (1− αζ)−(j+1)

( ∣∣∣
∥∥θk+j+1 − θ⋆

∥∥2
2
−
∥∥θk+j − θ⋆

∥∥2
2

∣∣∣
︸ ︷︷ ︸

≤
∥∥θk+j+1−θk+j

∥∥2

2

+αζ
∥∥θk+j − θ⋆

∥∥2
2
+ α2σ2

)

≤ (1− αζ)−(j+1)
( ∥∥θk+j+1 − θk+j

∥∥2
2︸ ︷︷ ︸

(29)

≤ α2
∥∥g(θk+j+1)−g(θk+j)

∥∥2

2

+αζ
∥∥θk+j − θ⋆

∥∥2
2︸ ︷︷ ︸

≤̺2

+α2σ2
)

(43)

Under Assumption 1, {g(θk)}k≥0 is uniformly bounded, i.e., for each k, we have

∥∥g(θk)
∥∥
2
=

∥∥∥∥
∑

t≥0

∇θ log πθk(at|st)︸ ︷︷ ︸
≤G;(7)

R(τk)

∥∥∥∥
2

≤ G
∑

t≥0

γtrt+1 ≤
GRmax

1− γ
. (44)

Thus, we can rewrite (43) as follows,

|Zj+1 − Zj | ≤ (1− αζ)−(j+1)
(
α2
∥∥g(θk+j+1)

∥∥2
2
+ α2

∥∥g(θk+j)
∥∥2
2
+ αζ̺2 + α2σ2

)

(44)
≤ (1− αζ)−(j+1)

(
α2 2G

2R2
max

(1− γ)2
+ αζ̺2 + α2σ2

)
=: cj+1. (45)

This concludes the proof.

D.3 Proof of Lemma 6

Proof. (of Lemma 6). Recall the results of (42) and (31). By Azuma’s inequality, consider the
sequence {Zj}κ0−1

j=0 defined in Eq.(40), recall cj is defined in (45), for any δ > 0, we have

P

(
Zκ0−1 − Z0 ≥ δ

)
≤ exp

(
− 2δ2
∑κ0−1

j=0 c2j

)
,

which implies the following holds,

P

(
Zκ0−1 − Z0 ≥

√√√√1

2

κ0−1∑

j=0

c2j

(
log

1

δ
+ 2 log

1

α

))
≤ α2δ. (46)

The result of (46) implies the following holds with probability less than α2δ,

∥∥θk+κ0−1 − θ⋆
∥∥2
2
− ασ2

ζ
≥ (1− αζ)κ0−1

√√√√1

2

κ0−1∑

j=0

c2j

(
log

1

δ
+ 2 log

1

α

)

+ (1− αζ)κ0−1
(∥∥θk − θ⋆

∥∥2
2
− ασ2

ζ

)
. (47)
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Rearranging Eq.(47),we have

∥∥θk+κ0−1 − θ⋆
∥∥2
2
≥ (1− αζ)κ0−1

√√√√1

2

κ0−1∑

j=0

c2j

(
log

1

δ
+ 2 log

1

α

)

︸ ︷︷ ︸
I1

+
(
1− αζ

)κ0−1∥∥θk − θ⋆
∥∥2
2︸ ︷︷ ︸

I2

+
(
1− (1− αζ)κ0−1

)ασ2

ζ︸ ︷︷ ︸
I3

. (48)

We need to give the conditions to achieve the boundedness of the terms I1, I2, I3 defined in Eq.(48).

Boundedness of I1 in Eq.(48). Consider cj in (45), i.e., cj = (1 − αζ)−j
(
α22G2R2

max/(1 − γ)2 +

αζ̺2 + α2σ2
)
, and with the condition α ≤ δ, we have

I1 = (1− αζ)κ0−1

√√√√1

2

κ0−1∑

j=0

c2j log
1

δ

=
(
α2 2G

2R2
max

(1− γ)2
+ αζ̺2 + α2σ2

)
√√√√1

2

κ0−1∑

j=0

(1− αζ)2(κ0−1)−2j

√
log

1

δ
+ 2 log

1

α

≤
(
α2 2G

2R2
max

(1− γ)2
+ αζ̺2 + α2σ2

)
√√√√1

2

κ0−1∑

j=0

(1− αζ)2j

√
3 log

1

α

≤
(
α2 2G

2R2
max

(1− γ)2
+ αζ̺2 + α2σ2

)
√√√√1

2

∞∑

j=0

(1− αζ)2j

√
3 log

1

α

=
(
α2 2G

2R2
max

(1− γ)2
+ αζ̺2 + α2σ2

)
√√√√√√√√

3 log
1

α

2
(
1− (1− αζ)2

)

︸ ︷︷ ︸
≥αζ

≤

(
α2 2G

2R2
max

(1− γ)2
+ αζ̺2 + α2σ2

)

√
2αζ

√
3 log

1

α
(49)

≤

(
α
2G2R2

max

(1− γ)2
+ αζ̺2 + ασ2

)

√
2αζ

√
3 log

1

α
=

√
α
(2G2R2

max

(1− γ)2
+ ζ̺2 + σ2

)

√
2ζ

√
3 log

1

α
, (50)

where Eq.(49) holds since αζ ∈ (0, 1), then 1− (1−αζ)2 = 2αζ − (αζ)2 = αζ(2−αζ) ≥ αζ; Eq.(50)
holds since α ∈ (0, 1).

We turn to find the condition satisfies

I1 =

√
α
(G2R2

max

(1− γ)2
+ ζ̺2 + σ2

)

√
2ζ

√
3 log

1

α
≤ 1

3
̺2, (51)
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which requires the step-size should stisfy

α log
1

α
≤ 2ζ̺4

27
(G2R2

max

(1− γ)2
+ ζ̺2 + σ2

)2 . (52)

It is noteworthy that since limα→0+ α log 1
α

= 0, then for an enough small α, the condition (52)
alway holds.

Boundedness of I2 in Eq.(48). In fact, I2 =
(
1− αζ

)κ0−1∥∥θk − θ⋆
∥∥2
2
≤
∥∥θk − θ⋆

∥∥2
2
≤ 1

3
̺2.

Boundedness of I3 in Eq.(48). In fact, let’s consider I3 =
(
1 − (1 − αζ)κ0−1

)ασ2

ζ
≤ ασ2

ζ
≤ 1

3
̺2,

which implies we need the following condition of step-size: α ≤ ζ̺2

3σ2
.

By the results of all the above boundedness of I1, I2, I3, under the following condition of step-size

α ≤ min
{
δ,
1

ζ
,
ζ

ℓ2
,
ζ̺2

3σ2

}
, α log

1

α
≤ 2ζ̺4

27
(
G2R2

max/(1− γ)2 + ζ̺2 + σ2
)2 ,

the result of (48) implies

P

(∥∥θk+κ0−1 − θ⋆
∥∥2
2
≥ ̺2

)
≤ α2δ.

This concludes the proof.

D.4 Proof of Proposition 3

Proof. (of Proposition 3) Let E[k:k+t] be the complementary event of E[k:k+t]. Recall

E[k:k+t] =

t⋂

j=0

{
θk+j :

∥∥θk+j − θ⋆
∥∥
2
≤ ̺
}
,

according to the basic law of set theory, we have

E[k:k+κ0] =

κ0⋂

j=0

{
θk+j :

∥∥θk+j − θ⋆
∥∥
2
≤ ̺
}

=

κ0⋃

j=0

{∥∥θk+j − θ⋆
∥∥
2
≤ ̺
}
=

κ0⋃

j=0

{∥∥θk+j − θ⋆
∥∥
2
> ̺
}

=

κ0−1⋃

j=0

{∥∥θk+j − θ⋆
∥∥
2
> ̺
}⋃{∥∥θk+κ0 − θ⋆

∥∥
2
> ̺
}
. (53)

Then,

P

(
E[k:k+κ0]

)
≤ P

( κ0−1⋃

j=0

{∥∥θk+j − θ⋆
∥∥
2
> ̺
})

+ P

(∥∥θk+κ0 − θ⋆
∥∥
2
> ̺
)
≤ P

(
E[k:k+κ0−1]

)
+ α2δ.

(54)
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Furthermore, the the condition θk falls in the ball B2(θ⋆,

√
3

3
̺) implies

P

(
E[k:k]

)
= 0;

By the result of (54), we have

P

(
E[k:k+κ0]

)
=

κ0∑

j=1

(
P

(
E[k:k+j]

)
− P

(
E[k:k+j−1]

))
+ P

(
E[k:k]

)
≤ κ0α

2δ. (55)

Let κ0 =
⌊ 1

α2
log

1

δ

⌋
+ 1, then we have P

[
E[k:k+κ0]

]
≤ δ log

1

δ
, which implies for each 0 ≤ j ≤

⌊ 1

α2
log

1

δ

⌋
+ 1, the following holds with probability at least 1− δ log

1

δ

∥∥θk+j − θ⋆
∥∥2
2
≤ ̺2, (56)

i.e., for each j ∈ [0, κ0], we have

P

(∥∥θk+j − θ⋆
∥∥
2
≤ ̺
)
≥ 1− δ log

1

δ
.

This concludes the proof.
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E Proof of Proposition 2

Proposition 2 Under Assumption 1-3, consider the sequence {θk}k≥0 generated by (5). If a point
θk satisfies

λmax(∇2J(θk)) ≥
√
χǫ, ‖∇J(θk)‖2 ≤ ǫ,

there exists a positive scalar κ̂0:

κ̂0 =

⌊ log
(

1
1−√

ασH0

)

log(1 + α
√
χǫ)

⌋
, where σH0 =

2p
√
phRmax(hG

2 + L)

1− γ
,

after at most j ≤ κ̂0 steps, we have

E[J(θk+j)]− J(θk) ≥ α2ι2
√
χǫ,

where ι is a positive constant defined in (132).

Notations There are many notations in this section for convenience of reference, we list key nota-
tions and constants in the following table.

H0 : H0 =: ∇2J(θ0).
{λi}pi=1 : λ1 ≤ λ2 ≤ · · · ≤ λp are the eigenvalues of the matrix ∇2J(θ0).

Λ : The operator norm of matrix H0, i.e., Λ = max1≤i≤p{|λi|}.
Ĵ(θ) : The second order approximation of J(θ), and it is defined in (58).

Ĥ0 : An estimator of H0, it is defined in (59)

θ̂k : The iteration defined in (60) that is generated according to problem
maxθ Ĵ(θ).

ξk : ξk = g(θk)−∇J(θk) that is defined in (32).

ξ̂k : ξ̂k = (Ĥ0 −H0)(θ̂k − θ̂0).
C1 : C1 is defined in (86).

C2, C3 : C2, C3 are defined in (93).
I1, I2 : They are defined in (65).

κ̂0 : A positive integer defined in (84).
∆Hk : ∆Hk = ∇2J(θk)−H0 = ∇2J(θk)−∇2J(θ0).

∆k : ∆k = ∇J(θk)−∇Ĵ(θ̂k).

φ̂, φ : φ̂ = θ̂k+1 − θ0 = θ̂k+1 − θ̂0 and φ = θk+1 − θ̂k+1.∥∥∥d
πθ∗
ρ0
ρ0

∥∥∥
∞

:
∥∥∥d

πθ∗
ρ0
ρ0

∥∥∥
∞

= sups∈S
d
πθ∗
ρ0

(s)

ρ0(s)
.

σH0 : It is defined in (78).
Bk, Ck : Two events defined in (101) and (102).
B1-B4 : They are defined in (104)-(107).
D1,D2 : They are defined in (109).
E1, E2 : They are defined in (115).

β : β =
2
√

α log 1
α
D1B1+D2

Λ2+2Λ

Without loss of generality, in the proof, we consider the initial θ0 falls into the region L2.

Organization and Key Ideas in This Section It is very technical to achieve the result of Propo-
sition 2, we outline some necessary intermediate results in the following Section E.1. Concretely,
Lemma 10 and Lemma 12 play a key role in the proof of Proposition 2. We utilize the second order
information of the expected return J(θ) as following two key steps:
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• Firstly, let Ĵ(θ) (defined in (58)) be the second order approximation of J(θ), we consider the
following optimization problem

max
θ

Ĵ(θ), (57)

and construct a sequence {θ̂k}k≥0 (defined in the below Eq.(60)) to solve the problem (57). Lemma

10 illustrates if an initial iteration θ̂0(= θ0) falls into the region

L2 = {θ ∈ R
p : ‖∇J(θ)‖2 ≤ ǫ} ∩ {θ ∈ R

p : λmax(∇2J(θ)) ≥ √
χǫ},

then the following facts happen: θ̂k+1 closes to the initial point θ̂0 for a long time and ‖∇Ĵ(θ̂k+1)‖2
can be small for a long time. Lemma 7-9 provide some intermediate results for the proof of Lemma
10, we will provide all the details of them step by step in the following Section E.2 to E.4. The
proof of Lemma 10 lies in Section E.5.

• Then, under above conditions, we provide Lemma 12, which illustrates if an initial iteration θ̂0
falls into the region L2, for a proper step-size, the iteration generated according to the problem
(57) can be closed to the solution of policy optimization (2) with high probability. We present the
precise result in (71). Similarly, the policy gradient estimator of the problem (2) can be closed to
the policy gradient estimator of (57), which is presented in (70).

E.1 Summary of Preliminary Results

Let λ1 ≤ λ2 ≤ · · · ≤ λp be the eigenvalues of the matrix ∇2J(θ0). We use H0 to denote the matrix
∇2J(θ0), in this section, we assume the initial point θ0 satisfies

λmax(∇2J(θ0)) = λmax(H0) = λp ≥
√
χǫ, ‖∇J(θ0)‖2 ≤ ǫ.

Furthermore, by the definition of the operator norm of H0, we have

‖H0‖op = max
1≤i≤p

{|λi|} = max{|λ1|, λp} =: Λ ≥ √
χǫ.

We use Ĵ(θ) to denote the second order approximation of J(θ), i.e., let H0 = ∇2J(θ0) ∈ Rp×p,

Ĵ(θ) = J(θ0) +∇J(θ0)
⊤(θ − θ0) +

1

2
(θ − θ0)

⊤H0(θ − θ0). (58)

Let τ̂0 = {ŝ0t , â0t , r̂0t+1}ht=0 ∼ π
θ̂0

, and we introduce a notation Φ̂(θ) as follows,

Φ̂(θ) =

h∑

t=0

h∑

i=t

γir̂0i+1(ŝ
0
i , â

0
i ) log πθ(ŝ

0
h, â

0
h).

According to the section 7.2 of (Shen et al., 2019), we conduct an unbiased estimator of H0 as:

Ĥ0 = ∇Φ̂(θ)∇ log p(τ̂0;πθ)
⊤ +∇2Φ̂(θ)

∣∣∣
θ=θ̂0

, (59)

where p(τ̂0;πθ̂0) = ρ0(ŝ
0
0)
∏h

t=0 P (ŝ0t+1|ŝ0t , â0t )πθ̂0(â
0
t |ŝ0t ) is the probability of generating τ̂0 according

to the policy π
θ̂0

.
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Lemma 7 (Boundedness of ‖Ĥ0 −H0‖op). Let H0 = ∇2J(θ0), Ĥ0 defined in (59) is an estimator
of H0. Under Assumption 1-3, the following holds

‖Ĥ0 −H0‖op ≤ 2
p
√
phRmax

1− γ

(
hG2 + L

)
=: σH0 .

Now, we consider a coupled sequence {θ̂k}k≥0 is the iteration of policy gradient solution on the second

order approximation function Ĵ(θ) defined in (58), i.e., {θ̂k}k≥0 solves the problem maxθ Ĵ(θ) along

the direction of a policy gradient estimator of ∇Ĵ(θ). Concretely, we set the initial value of θ̂0 as
the same consideration with policy optimization problem (2), i.e., θ̂0 = θ0. Then define the update
rule of θ̂k as follows,

θ̂0 = θ0, θ̂k+1 = θ̂k + α
̂∇Ĵ(θ̂k), (60)

where
̂∇Ĵ(·) is an estimator of the gradient function ∇Ĵ(·), and α is step-size. Taking the gradient

of the function Ĵ(θ) (58), we have

∇Ĵ(θ) = ∇J(θ0) +H0(θ − θ0), (61)

for the iteration (60), we define an estimator of ∇Ĵ(θ̂k) as follows,

̂∇Ĵ(θ̂k) = g(θ̂0) + Ĥ0(θ̂k − θ̂0), (62)

where Ĥ0 is defined in (59). Recall ξk defined in (32), since θ̂0 = θ0, then ξ0 = g(θ̂0)−∇J(θ̂0). Let
ξ̂k = (Ĥ0 −H0)(θ̂k − θ̂0), since ∇Ĵ(θ̂k) = ∇J(θ̂0) +H0(θ̂k − θ̂0), we can rewrite (60):

θ̂k+1
(60),(62)
======== θ̂k + α

(
g(θ̂0) + Ĥ0(θ̂k − θ̂0)

)
(63)

= θ̂k + α
(
g(θ̂0)−∇J(θ̂0)︸ ︷︷ ︸

=ξ0

+∇J(θ̂0) +H0(θ̂k − θ̂0)︸ ︷︷ ︸
=∇Ĵ(θ̂k)

+(Ĥ0 −H0)(θ̂k − θ̂0)︸ ︷︷ ︸
=ξ̂k

)

= θ̂k + α
(
∇Ĵ(θ̂k) + ξ̂k + ξ0

)
. (64)

Staring from (64), after some careful calculations, we have

θ̂k+1 − θ̂0 = α

k∑

j=0

(I + αH0)
j∇J(θ̂0)

︸ ︷︷ ︸
=:I2

+α

k∑

j=0

(I + αH0)
k−j
(
ξ̂j + ξ0

)

︸ ︷︷ ︸
=:I1

, (65)

∇Ĵ(θ̂k+1) = (I + αH0)
k∇J(θ0) + α

k∑

j=0

(I + αH0)
k−j
(
ξ̂j + ξ0

)

︸ ︷︷ ︸
=:I1

. (66)

Lemma 8 (Boundedness of Term I1 with High Probability). Under the conditions of Assumption
1-3 and Proposition 2, consider the term I1 =

∑k
j=0(I + αH0)

k−j
(
ξ̂j + ξ0

)
defined in (65)-(66).

Then, there exists a positive integer κ̂0, such that for each k ∈ [0, κ̂0], for any δ ∈ (0, 1), we have

P

(∥∥∥
k∑

j=0

(I + αH0)
k−j
(
ξ̂j + ξ0

)∥∥∥
2
≤ 2C1

√
κ̂0 log

4

δ

)
≥ 1− δ,

where C1 is defined in (86).
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Lemma 9 (Boundedness of Term I2 with High Probability). Under the conditions of Assumption
1-3 and Proposition 2, consider the term I2 =

∑k
j=0(I + αH0)

j∇J(θ̂0) defined in (65). Then, there
exists a positive integer κ̂0, such that for each k ∈ [0, κ̂0], we have

∥∥I2
∥∥
2
=
∥∥∥

k∑

j=0

(I + αH0)
j∇J(θ̂0)

∥∥∥
2
≤ ǫ

1−√
ασH0

.

From the results of Lemma 8 and Lemma 9, combine the result of (65)-(66), we have the boundedness
of ‖θ̂k+1 − θ̂0

∥∥
2

and ‖∇Ĵ(θ̂k+1)‖2 as following Lemma 10.

Lemma 10. Under Assumption 1-3, consider the sequence {θk}k≥0 generated by (5), {θ̂k}k≥0 gen-

erated by (60), and the initial point satisfies θ0 = θ̂0. Let H0 = ∇2J(θ0), the initial point θ0 also
satisfies λmax(H0) ≥

√
χǫ, ‖∇J(θ0)‖2 ≤ ǫ. Let Ĵ(θ) (58) be the second order approximation of the

expected return J(θ). Let

σH0 =
2p

√
phRmax(hG

2 + L)

1− γ
, α < min

{ 1

σH0

,
1

σ2
H0

}
,

⌊ log
(

1
1−√

ασH0

)

log(1 + α
√
χǫ)

⌋
=: κ̂0.

For each k ∈ [0, κ̂0], for any δ ∈ (0, 1), we have

P

(∥∥θ̂k+1 − θ̂0
∥∥
2
≤ α

(
2C1

√
κ̂0 log

4

δ
+

ǫ

1−√
ασH0

))
≥ 1− δ.

P

(∥∥∇Ĵ(θ̂k+1)
∥∥
2
≤ 2αC1

√
κ̂0 log

4

δ
+

ǫ

1−√
ασH0

)
≥ 1− δ.

where C1 =
1

1−√
ασH0

(
σH0

GRmax

1−γ

(
1√

χǫ(1−√
ασH0

)
+ α

1−ασH0

)
+ σ

)
.

Now, we turn to consider the term ∇J(θk)−∇Ĵ(θ̂k) =: ∆k and θk+1 − θ̂k+1. We give the partition
of ∆k and θk+1 − θ̂k+1 as below.

Let’s calculate the policy gradient ∇J(θk+1) as follows,

∇J(θk+1) = ∇J(θk) +∇2J(θk)(θk+1 − θk) + ek

= (1 + αH0)∇J(θk) + αH0(ξ̂k + ξ0) + α∆Hk(∇J(θk) + ξ̂k + ξ0) + ek, (67)

where

ek =

∫ 1

0

[
∇2J(θk + x(θk+1 − θk))−∇2J(θk)

]
d(θk+1 − θk)x,

∆Hk = ∇2J(θk)−H0 = ∇2J(θk)−∇2J(θ0).

Furthermore, let ∆k = ∇J(θk) − ∇Ĵ(θ̂k), then according to (66) and (67), after some careful
calculations, we have the following partition of the term ∇J(θk+1)−∇Ĵ(θ̂k+1) and θk+1 − θ̂k+1

∆k+1 = ∇J(θk+1)−∇Ĵ(θ̂k+1)

= (I + αH0)∆k + α∆Hk

(
∆k +∇Ĵ(θ̂k)

)
+ α∆Hk

(
ξ̂k + ξ0

)
+ ek (68)

θk+1 = θ̂k+1 + α

k∑

j=0

∆j (69)

Finally, we need the boundedness of ‖∇J(θk)‖2 to prove the Lemma 12, we present it below.
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Lemma 11. The term ‖∇J(θk)‖2 is upper-bounded as follows,

‖∇J(θk)‖2
(a)
= ‖∇J(θ⋆)−∇J(θk)‖2 ≤

∥∥∥d
πθ⋆
ρ0

ρ0

∥∥∥
∞
(1 + γ|S|)|A|2|S|Rmax

(1− γ)2
,

where
∥∥∥d

πθ⋆
ρ0

ρ0

∥∥∥
∞

= maxs∈S
d
πθ⋆
ρ0 (s)

ρ0(s)
, Eq.(a) holds since ∇J(θ⋆) = 0.

Lemma 12. Under Assumption 1-3, consider the sequence {θk}k≥0 generated by (5), {θ̂k}k≥0 gen-

erated by (60), and the initial point satisfies θ0 = θ̂0. Let H0 = ∇2J(θ0), the initial point θ0 also
satisfies λmax(H0) ≥

√
χǫ, ‖∇J(θ0)‖2 ≤ ǫ. Let Ĵ(θ) (58) be the second order approximation of the

expected return J(θ). Let σH0 =
2p

√
phRmax(hG2+L)

1−γ
, α < 1

σH0
,

⌊
log
(

1
1−

√
ασH0

)

log(1+α
√
χǫ)

⌋
+ 1 =: κ̂0. For each

k ∈ [0, κ̂0], the following holds,

P

(
max

{
‖∆k‖2, ‖∆k‖22

}
≥ C4

√
α3 log

1

α

)
≤ σH0√

χǫ
α

3
2 + o(α

3
2 ), (70)

P

(
∥∥θk+1 − θ̂k+1

∥∥
2
≤ α2

√
log

1

α

σH0√
χǫ

C4 + o
(
α2

√
log

1

α

))
≤ σH0√

χǫ
α

3
2 + o(α

3
2 ). (71)

E.2 Proof of Lemma 7

Proof. (of Lemma7). We need two results of operator norms to show the boundedness of ‖Ĥ0−H0‖op.
For any matrix A = (ai,j) ∈ Rp×p, B ∈ Rp×p, the following holds,

‖A+B‖op ≤ ‖A‖op + ‖B‖op, (72)

max
i,j

{|ai,j |} ≤ ‖A‖op ≤ p
√
pmax

i,j
{|ai,j |}. (73)

For the proof of (72) and (73), please refer to Theorem 3.4 of a lecture provided in

https://kconrad.math.uconn.edu/blurbs/linmultialg/matrixnorm.pdf.

Using the result of of (73), we have

‖Ĥ0 −H0‖op ≤ ‖Ĥ0‖op + ‖H0‖op,

to achieve the boundedness of ‖Ĥ0 −H0‖op, we need to bound ‖Ĥ0‖op, ‖H0‖op correspondingly.

Recall τ0 = {s0t , a0t , r0t+1}ht=0 ∼ πθ0 , let Φ(θ) =
∑h

t=0

∑h
i=t γ

ir0i+1(s
0
i , a

0
i ) log πθ(s

0
h, a

0
h). According to

section 7.2 of (Shen et al., 2019), the second order derivative of J(θ) is

∇2J(θ) = Eτ∼πθ0

[
∇Φ(θ)∇ log p(τ0;πθ)

⊤ +∇2Φ(θ),
]

(74)

where p(τ0;πθ0) = ρ0(s
0
0)
∏h

t=0 P (s0t+1|s0t , a0t )πθ0(a0t |s0t ) is the probability of generating τ0 according
to the policy πθ0 . From the result of (74), if we get the boundedness of ∇Φ(θ)∇ log p(τ0;πθ)

⊤ +
∇2Φ(θ), then the boundedness of

∥∥H0

∥∥
op

=
∥∥∇2J(θ0)

∥∥
op

is clear.
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Now, we will bound the operator norm of the matrix ∇Φ(θ)∇ log p(τ0;πθ)
⊤ +∇2Φ(θ). We need a

simple fact: if a = (a1, a2, · · · , ap)⊤, b = (b1, b2, · · · , bp) ∈ Rp, and A = ab⊤, then we have

‖A‖op = ‖ab⊤‖op
(73)
≤ p

√
pmax

i,j
|aibj | ≤ p

√
pmax

i
|ai| ·max

j
|bj |. (75)

The results of (73),(75) imply that to achieve the boundedness of the operator norm of the matrix
∇Φ(θ)∇ log p(τ0;πθ)

⊤+∇2Φ(θ), we need to bound the elements of the vectors: ∇Φ(θ),∇ log p(τ0;πθ)
⊤,

and bound each element of the Hessian matrix ∇2Φ(θ).

Recall Assumption 1, for each 1 ≤ j ≤ p, we have

∣∣∣[∇Φ(θ)]j

∣∣∣ =
∣∣∣
[ h∑

t=0

h∑

i=t

γir0i+1(s
0
i , a

0
i )∇ log πθ(s

0
h, a

0
h)︸ ︷︷ ︸

(7)

≤ G

]
j

∣∣∣ ≤ hGRmax

1− γ
,

∣∣∣[∇ log p(τ0;πθ)]j

∣∣∣ =
∣∣∣
[ h∑

t=0

ρ0(s
0
0)P (s0t+1|s0t , a0t )∇ log πθ(s

0
h, a

0
h)︸ ︷︷ ︸

(7)

≤ G

]
j

∣∣∣ ≤ hG,

where [·]j denotes the j-the coordinate component of a vector. Combining above two results, we
have

‖∇Φ(θ)∇ log p(τ0;πθ)
⊤‖op

(75)
≤ p

√
p
hGRmax

1− γ
· hG = p

√
p
h2G2Rmax

1− γ
. (76)

Now, we bound on the term ‖∇2Φ(θ)‖op. Let [·]i,j denotes the (i, j)-the coordinate component of a
matrix, then for each element of ‖∇2Φ(θ)‖op, we have

∣∣∣[∇2Φ(θ)]i,j
∣∣ =

∣∣∣
h∑

t=0

h∑

i=t

γir0i+1(s
0
i , a

0
i )

∂2

∂θi∂θj
log πθ(s

0
h, a

0
h))

︸ ︷︷ ︸
(7)

≤ F

∣∣∣ ≤ hLRmax

1− γ
,

which implies

‖∇2Φ(θ)‖op
(73)
≤ p

√
p
hLRmax

1− γ
. (77)

By the results of (76) and (77), we have

‖H0‖op = ‖∇J(θ0)‖op ≤ ‖∇2Φ(θ)∇ log p(τ0;πθ)
⊤‖op + ‖∇2Φ(θ)‖op

≤ p
√
phRmax

1− γ

(
hG2 + L

)
.

As the same analysis with ‖H0‖op, we have ‖Ĥ0‖op ≤ p
√
phRmax

1− γ

(
hG2 + L

)
. Thus, we have

‖Ĥ0 −H0‖op ≤ ‖Ĥ0‖op + ‖H0‖op ≤ 2
p
√
phRmax

1− γ

(
hG2 + L

)
=: σH0 . (78)

This concludes the proof.
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E.3 Proof of Lemma 8

Proof. (of Lemma 8) Recall I1 =
∑k

j=0(I + αH0)
k−j
(
ξ̂j + ξ0

)
, which implies to bound I1, we need

to bound ξ̂k.

Firstly, we decompose the term ξ̂k = (Ĥ0 −H0)(θ̂k − θ̂0). Consider the update (63), we have

θ̂k+1 − θ̂k = (I + αĤ0)(θ̂k − θ̂k−1) (79)

= (I + αH0)(θ̂k − θ̂k−1) + α(Ĥ0 −H0)(θ̂k − θ̂k−1)

= · · · · · ·
= (I + αH0)

k(θ̂1 − θ̂0) + αk(Ĥ0 −H0)
k(θ̂1 − θ̂0). (80)

Recall ξ̂k = (Ĥ0 −H0)(θ̂k − θ̂0), according to the result of (80), we rewrite ξ̂k as follows,

ξ̂k = (Ĥ0 −H0)

(
k−1∑

j=0

(
(I + αH0)

j(θ̂1 − θ̂0) + αj(Ĥ0 −H0)
j(θ̂1 − θ̂0)

))
. (81)

Boundedness of ξ̂k = (Ĥ0 −H0)(θ̂k − θ̂0).

∥∥ξ̂k
∥∥
2

(81)
=

∥∥∥∥(Ĥ0 −H0)

( k−1∑

j=0

(
(I + αH0)

j(θ̂1 − θ̂0) + αj(Ĥ0 −H0)
j(θ̂1 − θ̂0)

))∥∥∥∥
2

≤
∥∥(Ĥ0 −H0)

∥∥
op
‖θ̂1 − θ̂0‖2︸ ︷︷ ︸
=α‖g(θ0)‖2

( k−1∑

j=0

(
(1 + αΛ)j + αj

∥∥Ĥ0 −H0

∥∥j
op

))

(78)
≤ ασH0‖g(θ0)‖2

( k−1∑

j=0

(
(1 + αΛ)j + αjσj

H0

)

≤ασH0‖g(θ0)‖2
(
(1 + αΛ)k−1

αΛ
+

1− αk−1σk−1
H0

1− ασH0

)
. (82)

Let

(1 + αΛ)k−1 ≤ 1

1−√
ασH0

, (83)

which requires k ≤
⌊
log

(
1

1−
√

ασH0

)

log(1+αΛ)

⌋
. For a enough small α, the term

⌊
log

(
1

1−
√

ασH0

)

log(1+αΛ)

⌋
decreases as

Λ increases. Recall Λ ≥ √
χǫ, then we have

k ≤
⌊ log

( 1

1−√
ασH0

)

log(1 + αΛ)

⌋
≤
⌊ log

( 1

1−√
ασH0

)

log(1 + α
√
χǫ)

⌋
=: κ̂0. (84)
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Thus, for all k ≤ κ̂0, from (82), and Λ ≥ √
χǫ, we have

∥∥ξ̂k
∥∥
2
≤ασH0‖g(θ0)‖2

( 1

αΛ(1 −√
ασH0)

+
1

1− ασH0

)

≤ασH0‖g(θ0)‖2
( 1

α
√
χǫ(1−√

ασH0)
+

1

1− ασH0

)

(44)
≤ σH0GRmax

1− γ

( 1√
χǫ(1−√

ασH0)
+

α

1− ασH0

)
. (85)

It is noteworthy that to ensure the term 1 − ασH0 and 1 − √
ασH0 keep positive, we require α <

min{ 1
σH0

, 1
σ2
H0

}.

Boundedness of I1 in Eq.(65)/(66). Furthermore, for each 0 ≤ j ≤ κ̂0, we have

‖(I + αH0)
k−j
(
ξ̂j + ξ0

)
‖2 ≤ ‖I + αH0‖κ̂0

op‖ξ̂j + ξ0‖2
=(1 + αΛ)κ̂0‖ξ̂j + ξ0‖2 ≤ (1 + αΛ)κ̂0

(
‖ξ̂j‖2 + ‖ξ0‖2

)

(85)
≤ 1

1−√
ασH0

(
σH0GRmax

1− γ

( 1√
χǫ(1−√

ασH0)
+

α

1− ασH0

)
+ σ

)

=:C1. (86)

Finally, for each 0 ≤ j ≤ κ̂0 and k ≤ κ̂0 we have

E

[
(I + αH0)

k−j
(
ξ̂j + ξ0)

]
= 0. (87)

Recall Hoeffding inequality, and the result of (86),(87), for each k ∈ [0, κ̂0], for any δ ∈ (0, 1),

P

(∥∥∥
k∑

j=0

(I + αH0)
k−j
(
ξ̂j + ξ0

)∥∥∥
2
≤ 2C1

√
κ̂0 log

4

δ

)
≥ 1− δ. (88)

Remark 3. For a small α, the term C1 (86) can be rewritten as follows,

C1 =
σH0GRmax

(1− γ)
√
χǫ

+ σ +O(α). (89)

E.4 Proof of Lemma 9

Proof. (of Lemma 9). Recall θ̂0 = θ0, then ‖∇J(θ̂0)‖ ≤ ǫ. Thus, for each k ∈ [0, κ̂0], we have

∥∥I2
∥∥
2
=
∥∥∥

k∑

j=0

(I + αH0)
j∇J(θ̂0)

∥∥∥
2
≤

k∑

j=0

(
1 + αΛ)

)j∥∥∇J(θ̂0)
∥∥
2

(83)
≤ ǫ

1−√
ασH0

. (90)

This concludes the proof.
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E.5 Proof of Lemma 10

Proof. (of Lemma 10)

Boundedness for the term θ̂k+1 − θ̂0 defined in Eq.(65) with high probability.

Recall the term θ̂k+1 − θ̂0 = αI1 + αI2 defined in (65), and results of (88) and (90) show the
boundedness of I1 and I2 correspondingly. Then for each k ∈ [0, κ̂0], for any δ ∈ (0, 1), we have

P

(
∥∥θ̂k+1 − θ̂0

∥∥
2
≤ α

(
2C1

√
κ̂0 log

4

δ
+

ǫ

1−√
ασH0

))
≥ 1− δ. (91)

Boundedness for the term ∇Ĵ(θ̂k+1) defined in Eq.(66) with high probability.

Firstly, we bound the term (I+αH0)
k∇J(θ0) in Eq.(66). Recall the condition of κ̂0 defined in (84),

the result of (99), and the initial condition of ‖∇J(θ0)
∥∥
2
≤ ǫ, then we have

∥∥(I + αH0)
k∇J(θ0)

∥∥
2
≤
∥∥I + αH0‖kop‖∇J(θ0)‖2 = (1 + αΛ)k‖∇J(θ0)

∥∥
2
≤ ǫ

1−√
ασH0

.

Furthermore, from the result of (88), for each k ∈ [0, κ̂0], the following holds with probability at least

1 − δ,
∥∥∇Ĵ(θ̂k+1)

∥∥
2
=
∥∥∥(I + αH0)

k∇J(θ0) + α
∑k

j=0(I + αH0)
k−j
(
ξ̂j + ξ0

)∥∥∥
2
≤ α2C1

√
κ̂0 log

4

δ
+

ǫ

1− ασH0

. That is

P

(
∥∥∇Ĵ(θ̂k+1)

∥∥
2
≤ 2αC1

√
κ̂0 log

4

δ
+

ǫ

1−√
ασH0

)
≥ 1− δ. (92)

This concludes the proof.

For simplify, we introduce two following notations C1, C2to short expressions,

C2 = 2C1

√
κ̂0 log

4

δ
+

ǫ

1−√
ασH0

, C3 = 2C1

√
κ̂0 log

4

δ
+

1

1−√
ασH0

. (93)

E.6 Proof of Lemma 11

Firstly, let’s bound on the term ‖∇Aπθ(s, a)‖2 = ‖∇Qπθ(s, a)−∇V πθ(s)‖2. In fact,

‖∇V πθ(s)‖2 =
∥∥∥∇Eπθ

[
∞∑

t=0

γtrt+1]
∥∥∥
2
=
∥∥∥
∑

a∈A
∇πθ(a|s)︸ ︷︷ ︸

(7)

≤ U

∞∑

t=0

γtrt+1

∥∥∥
2
≤
∑

a∈A

Rmax

1− γ
=

URmax|A|
1− γ

,

(94)

‖∇Qπθ(s, a)‖2 =
∥∥∥∇
(
R(s, a) + γ

∑

s
′∈S

P (s
′ |s, a)V πθ(s)

)∥∥∥
2
= γ

∥∥∥
∑

s
′∈S

P (s
′ |s, a)∇V πθ(s)

∥∥∥
2

≤ γ
∑

s
′∈S

‖∇V πθ(s)‖2
(94)
≤ γURmax|A||S|

1− γ
. (95)
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Thus, by the results of (94) and (95), we have

∥∥∥∇Aπθ(s, a)
∥∥∥
2
≤
∥∥∥∇Qπθ(s, a)

∥∥∥
2
+
∥∥∥∇V πθ(s)

∥∥∥
2
≤ (1 + γ|S|)URmax|A|

1− γ
. (96)

Now, we consider the boundedness of
∥∥∥∇J(θ⋆)−∇J(θk)

∥∥∥
2
, in fact,

∥∥∥∇
(
J(θk)− J(θ⋆)

)∥∥∥
2

(26)
=
∥∥∥∇
∫

s∈S

∫

a∈A
d
πθ⋆
ρ0 (s)πθ⋆(a|s)Aπθ (s, a)dsda

∥∥∥
2

=
∥∥∥∇
∫

s∈S

∫

a∈A

d
πθ⋆
ρ0 (s)

dπθ
ρ0 (s)

dπθ
ρ0
(s)πθ⋆(a|s)Aπθ (s, a)dsda

∥∥∥
2

=
∥∥∥
∫

s∈S

∫

a∈A

d
πθ⋆
ρ0 (s)

dπθ
ρ0 (s)

dπθ
ρ0
(s)πθ⋆(a|s)︸ ︷︷ ︸

≤1

∇Aπθ(s, a)dsda
∥∥∥
2

≤
∫

s∈S

∫

a∈A

(
d
πθ⋆
ρ0 (s)

dπθ
ρ0 (s)

∥∥dπθ
ρ0
(s)
∥∥
2

∥∥∇Aπθ(s, a)
∥∥
2

)
dsda

≤
∫

s∈S

∫

a∈A
max
s∈S

d
πθ⋆
ρ0 (s)

dπθ
ρ0 (s)︸ ︷︷ ︸

=

∥∥∥d
πθ⋆
ρ0

dπθ
ρ0

∥∥∥
∞

1

1− γ

∥∥∇Aπθ(s, a)
∥∥
2
dsda (97)

(96)
≤
∫

s∈S

∫

a∈A

∥∥∥d
πθ⋆
ρ0

ρ0

∥∥∥
∞
(1 + γ|S|)URmax|A|

(1− γ)2
dsda (98)

=
∥∥∥d

πθ⋆
ρ0

ρ0

∥∥∥
∞
(1 + γ|S|)|A|2|S|URmax

(1− γ)2
, (99)

where Eq.(97) holds since

‖dπθ
ρ0
(s)‖2 = ‖Es0∼ρ0(·)[d

πθ
s0
(s)]‖2 = ‖Es0∼ρ0(·)[

∞∑

t=0

γt P πθ(st = s|s0)︸ ︷︷ ︸
≤1

]‖2 ≤ 1

1− γ
.

Eq.(98) holds since dπθ
ρ0
(s) ≥ ρ0(s), thus, we have

∥∥∥d
πθ⋆
ρ0

dπθ
ρ0

∥∥∥
∞

= max
s∈S

d
πθ⋆
ρ0 (s)

dπθ
ρ0 (s)

≤ max
s∈S

d
πθ⋆
ρ0 (s)

ρ0(s)
=
∥∥∥d

πθ⋆
ρ0

ρ0

∥∥∥
∞
.

E.7 Proof of Lemma 12

Organization It is very technical to achieve the results of Lemma 12, our outline our proof as
follows: in section E.7.1, we bound all the four terms of (68); in section E.7.2, we bound the term
Zj with high probability, which is a preliminary result for applying Azuma’s Inequality to get a

further result; in section E.7.3, we bound the ∆k = ∇J(θk)−∇Ĵ(θ̂k) with high probability; finally,
in section E.7.4, we bound θk+1 − θ̂k+1 with high probability.

Proof. (of Lemma 12) Before we present the details of the proof, we need some preliminary results.

Preliminary results. Under Assumption 1-2, we have

∥∥∆Hk

∥∥
op

≤ χ
(∥∥θk+1 − θ̂k+1

∥∥
2
+
∥∥θ̂k+1 − θ̂0

∥∥
2

)
,
∥∥ek
∥∥
2
≤ χ

2

∥∥θk − θk+1

∥∥
2
. (100)
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We define two events Bk and Ck as follows,

Bk =

k⋂

j=0

{
j ≤ k :

∥∥θ̂j − θ̂0
∥∥
2
≤ αC2 and

∥∥∇Ĵ(θ̂j)
∥∥
2
≤ αC3

}
, (101)

Ck =

k⋂

j=0

{
j ≤ k : max

{∥∥∆j

∥∥
2
,
∥∥∆j

∥∥2
2

}
≤ C4

√
α3 log

1

α

}
, (102)

where C2 and C3 are defined in (93), C4 is a positive constant, and we will provide the rule of
choosing C4 in (123). Since ∆0 = 0, the event C0 6= ∅. The chosen rule of C4 ensures for each
k ∈ [0, κ̂0], the event Ck 6= ∅.

Furthermore, for each k ∈ [0, κ̂0], the following equation occurs with probability at least 1− δ,

‖∆Hk‖op
(100)
≤ χ

(
‖θk+1 − θ̂k+1‖2︸ ︷︷ ︸
(69)

≤ α
∥∥∑k

j=0 ∆j

∥∥
2

+ ‖θ̂k+1 − θ̂0‖2︸ ︷︷ ︸
(101)

≤ αC2

)

≤χα
( k∑

j=0

∥∥∆j

∥∥
2
+ C2

) (102)
≤ χα

(
C4κ̂0

√
α3 log

1

α
+ C2

)
. (103)

E.7.1 Bounded of all the four terms of Eq.(68)

For each k ∈ [0, κ̂0], the following equation occurs with probability at least 1− δ:

❶ for the first term of Eq.(68),

∥∥(I + αH0)∆k

∥∥
2
≤
∥∥I + αH0

∥∥
op

∥∥∆k

∥∥
2

(102)
≤ (1 + αΛ)

√
α3 log

1

α
C4 =:

√
α3 log

1

α
B1, (104)

where B1 = (1 + αΛ)C4.

❷ for the second term of Eq.(68),
∥∥α∆Hk[∆k +∇Ĵ(θ̂k)]

∥∥
2
=α
∥∥∆Hk∇J(θk)

∥∥
2
≤ α

∥∥∆Hk

∥∥
op

∥∥∇J(θk)
∥∥
2

(99),(103)
≤ α2χ

(
C4κ̂0

√
α3 log

1

α
+ C2

)∥∥∥d
πθ⋆
ρ0

ρ0

∥∥∥
∞

(1 + γ|S|)|A|2|S|URmax

(1− γ)2

=:α2B2, (105)

where B2 = χ
(
C4κ̂0

√
α3 log 1

α
+ C2

)∥∥∥d
πθ⋆
ρ0
ρ0

∥∥∥
∞

(1+γ|S|)|A|2|S|URmax

(1−γ)2
.

❸ for the third term of Eq.(68),

‖α∆Hk(ξ̂k + ξ0)‖2
(85),(103)

≤ α2χ
(√

α3 log
1

α
κ̂0C4 + C2

)(σH0GRmax

1− γ

( 1√
χǫ(1−√

ασH0)
+

α

1− ασH0

)
+ σ

)

=:α2B3, (106)

where B3 = χ
(√

α3 log 1
α
κ̂0C4 + C2

)(σH0GRmax

1− γ

(
1√

χǫ(1−√
ασH0

)
+ α

1−ασH0

)
+ σ

)
.
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❹ for the forth term of Eq.(68),

‖ek‖2 = ‖θk+1 − θk‖2 ≤ α
χ

2
‖g(θk)‖2

(44)
≤ 1

2
αχ
(GRmax

1− γ

)
=: αB4, (107)

where B4 = χ
(
GRmax
2(1−γ)

)
.

From the results of (104)-(107), we have

E

[
‖∆k+1‖22

∣∣∣Fk

] (68)
≤ ‖(I + αH0)∆k‖22 + 2α‖(I + αH0)∆k‖2(αB2 + αB3 +B4)

+ α4B2
2 + α4B2

3 + α2B2
4 + 2(α4B2B3 + α3B2B4 + α3B3B4). (108)

For simplify, we introduce two following notations to short expressions,

D1 = αB2 + αB3 +B4, D2 = α2B2
2 + α2B2

3 +B2
4 + 2(α2B2B3 + αB2B4 + αB3B4), (109)

then we can rewrite (108) as follows,

E

[∥∥∆k+1

∥∥2
2
|Fk

]
≤
∥∥(I + αH0)∆k

∥∥2
2
+ 2αD1

∥∥(I + αH0)∆k

∥∥
2
+ α2D2

(104)
≤ (1 + αΛ)2

∥∥∆k

∥∥2
2
+ 2α

5
2

√
log

1

α
D1B1 + α2D2. (110)

Rearranging Eq.(110), we have

E

[
∥∥∆k+1

∥∥2
2
+

2α
3
2

√
log 1

α
D1B1 + αD2

αΛ2 + 2Λ

∣∣∣∣∣Fk

]

≤(1 + αΛ)2

(
∥∥∆k

∥∥2
2
+

2α
3
2

√
log 1

α
D1B1 + αD2

αΛ2 + 2Λ

)
. (111)

E.7.2 Boundedness of Zj = (1 + αΛ)−2j
(
‖∆j‖22 +

2α
3
2

√
log 1

α
D1B1+αD2

αΛ2+2Λ

)
.

We will use Azuma’s inequality, i.e., Lemma 1 to achieve the boundedness of Zj, which require us
to show: (i) {Zj} is a super-martingale, (ii) the boundedness |Zj+1 − Zj| almost surely.

Let Fk = σ{ξ0, ξ̂1, · · · , ξ̂k} be a filtration generated by all the information from time 0 to k. Then
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{Zj} is a super-martingale with respect to the filtration {Fj}. In fact, for each j ∈ [0, κ̂0], we have

E

[
Zj

∣∣∣Fj−1

]

=(1 + αΛ)−2j

(
E

[
‖∆j‖22

]
+

2α
3
2

√
log 1

α
D1B1 + αD2

αΛ2 + 2Λ

)

(110)
≤ (1 + αΛ)−2j

(
(1 + αΛ)2‖∆j−1‖22 + 2α

5
2

√
log

1

α
D1B1 + α2D2 +

2α
3
2

√
log 1

α
D1B1 + αD2

αΛ2 + 2Λ

)

≤(1 + αΛ)−2(j−1)

(
‖∆j−1‖22 +

2α
5
2

√
log 1

α
D1B1 + α2D2

(1 + αΛ)2
+

2α
3
2

√
log 1

α
D1B1 + αD2

(αΛ2 + 2Λ)(1 + αΛ)2︸ ︷︷ ︸

=

2α
3
2

√
log

1

α
D1B1 + αD2

αΛ2 + 2Λ

)

=Zj−1, (112)

which implies Zj is a super-martingale.

We introduce β to short the expression Zj ,

β =
2
√

α log 1
α
D1B1 +D2

Λ2 + 2Λ

i.e., Zj = (1 + αΛ)−2j
(
‖∆j‖22 + αβ

)
.

Furthermore, let us bound the term
∣∣Zj − Zj−1

∣∣. In fact, since Zj is a super-martingale, then
∣∣Zj − Zj−1

∣∣ (113)

≤
∣∣Zj − E

[
Zj

∣∣Fj−1

]∣∣ = (1 + αΛ)−2j
∣∣‖∆2

j‖2 − E
[
‖∆2

j‖2|Fj−1

]∣∣.

The result of (113) shows that to bound the term
∣∣Zj −Zj−1

∣∣, we need to bound the term
∣∣‖∆2

j‖2−
E
[
∆2

j‖2|Fj−1

]∣∣.

Recall the filtration Fj = σ{ξ0, ξ̂1, · · · , ξ̂j}, and ∆j defined in (68), where the first two terms are
deterministic, and only the third and fourth term are random. Then the following holds almost
surely,

∣∣∣‖∆j‖22 − E

[
‖∆j‖22|Fj−1

]∣∣∣ ≤4α
∥∥(I + αH0

)
∆j

∥∥
2

(
αB3 +B4

)

+ 2α4B2
3 + 2α2B2

4 + 4
(
α4B2B3 + α3B2B3 + α3B3B4

)

(104)
≤ 4α

√
α3 log

1

α
B1

(
αB3 +B4

)

+ 2α4B2
3 + 2α2B2

4 + 4
(
α4B2B3 + α3B2B3 + α3B3B4

)

=:cj . (114)

To short the expression, we introduce two notations as follows,

E1 = 4B1(αB3 +B4),

E2 = 2α2B2
3 + 2B2

4 + 4(α2B2B3 + αB2B3 + αB3B4). (115)

36



From the results of (113) and (114), we have the boundedness of
∣∣Zj − Zj−1

∣∣ as follows,

∣∣Zj − Zj−1

∣∣ ≤ α
5
2

√
log

1

α
E1 + α2E2 = cj .

Finally, from Azuma’s inequality, i.e., Lemma 1, the following holds, for any δ > 0, we have

P
(
Zκ̂0

− Z0 ≥ δ
)
≤ exp

(
− 2δ2
∑κ̂0

j=0 c
2
j

)
,

which implies the following holds with probability less than α2

Zκ̂0
− Z0 ≥

√√√√log
1

α

κ̂0∑

j=0

c2j . (116)

Recall κ̂0 =

⌊
log

(
1

1−
√

ασH0

)

log(1+α
√
χǫ)

⌋
, and Taylor’s expression of log(1 + x),

log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · + (−1)n−1x

n

n
+ · · · , x ∈ (−1, 1),

then for a enough small α, κ̂0 is upper-bounded as follows,

κ̂0 =

⌊ log
( 1

1−√
ασH0

)

log(1 + α
√
χǫ)

⌋
= O

(√ασH0

αΛ

)
+ 1 ≤ O

( σH0√
χǫα

)
. (117)

From the result of (116), for each k ∈ [1, κ̂0], we have

α2 ≥ P

(
Zk − Z0 ≥

√√√√log
1

α

κ̂0∑

j=0

c2j

)
= P

(
Zk ≥ Z0 +

√√√√log
1

α

κ̂0∑

j=0

c2j

)
(118)

= P

(
Zk ≥ αβ +O

(
α

7
4

√
log

1

α
E2

√
σH0√
χǫ

))
, (119)

where Eq.(119) holds from (118) due to the following three aspects:

(i) Z0 = ‖∆0‖22 + αβ and ∆0 = ∇J(θ0)−∇Ĵ(θ̂0)
(61)
= 0, which implies Z0 = αβ;

(ii) recall cj = α
5
2

√
log 1

α
E1 + α2E2, which implies for an enough small α, we can estimate cj as

follows, c2j = O
(
α4E2

2

)
;

(iii)furthermore, since κ̂0 is upper bounded by O
( σH0√

χǫα

)
, then we have

√√√√log
1

α

κ̂0∑

j=0

c2j = O
(
α

7
4

√
log

1

α
E2

√
σH0√
χǫ

)
.

Rewrite (119), we present the boundedness of Zk with high probability as follows,

P

(
Zk ≤ αβ +O

(
α

7
4

√
log

1

α
E2

√
σH0√
χǫ

))
≥ 1− α2.
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E.7.3 Boundedness of ∆k = ∇J(θk)−∇Ĵ(θ̂k).

Recall Zk = (1 + αΛ)−2k
(
‖∆k‖22 + αβ

)
, the event

Zk ≥ αβ +O
(
α

7
4

√
log

1

α
E2

√
σH0√
χǫ

)

is equivalent to

‖∆k‖22 ≥ (1 + αΛ)2k · O
(
α

7
4

√
log

1

α
E2

√
σH0√
χǫ

)
+
(
(1 + αΛ)2k − 1

)
αβ. (120)

Since κ̂0: (1 + αΛ)κ̂0 ≤ 1

1−√
ασH0

, which implies the first term of (120) is upper-bounded as

follows,

(1 + αΛ)2k · O
(
α

7
4

√
log

1

α
E2

√
σH0√
χǫ

)
≤
( 1

1−√
ασH0

)2
· O
(
α

7
4

√
log

1

α
E2

√
σH0√
χǫ

)
. (121)

The second term of (120) is upper-bounded as follows: for a small α, for each k ∈ [0, κ̂0],

(
(1 + αΛ)2k − 1

)
αβ =

( 2k∑

j=0

(
2k

j

)
(αΛ)j

︸ ︷︷ ︸
Newton’s binomial expression of (1+αΛ)2k

−1

)
αβ

=
(
2kαΛ +

2k(2k − 1)(αΛ)2

2
+ · · ·+ (αΛ)2k

)
αβ

= O
(
2kα2Λβ

) (117)
≤ O

(2α 3
2ΛβσH0√
χǫ

)
. (122)

Combining above (121), (122), we can bound the right equation of (120) as follows,

(1 + αΛ)2k · O
(
α

7
4

√
log

1

α
E2

√
σH0√
χǫ

)
+
(
(1 + αΛ)2k − 1

)
αβ

≤O
(
α

7
4

√
log

1

α
E2

√
σH0√
χǫ

)
+O

(2α 3
2ΛβσH0√
χǫ

)
+
( 1

1−√
ασH0

)2

≤O
(
max

{
2α

3
2ΛβσH0√
χǫ

, α
7
4

√
log

1

α
E2

√
σH0√
χǫ

})

≤C4

√
α3 log

1

α
. (123)

The last (123) present the condition of the parameter C4.

Now, we define two events Ẽ1 and Ẽ2 as follows,

Ẽ1 =
{
‖∆k‖22 ≥ (1 + αΛ)2k · O

(
α

7
4

√
log

1

α
E2

√
σH0√
χǫ

)
+
(
(1 + αΛ)2k − 1

)
αβ

}

Ẽ2 =
{
‖∆k‖22 ≥ C4

√
α3 log

1

α

}
.
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The results of (120) and (123) imply the event Ẽ1 contains Ẽ2, i.e., Ẽ2 ⊂ Ẽ1. Then

P(Ẽ2) = P

(
‖∆k‖22 ≥ C4

√
α3 log

1

α

)

≤ P(Ẽ1)
(a)
= P

(
Zk ≥ αβ +O

(
α

7
4

√
log

1

α
E2

√
σH0√
χǫ

))
(119)
≤ α2, (124)

where (a) of (124) holds since the event Ẽ1 is equivalent to
{
Zk ≥ αβ +O

(
α

7
4

√
log 1

α
E2

√
σH0√
χǫ

)}
,

we have provided the detail of this conclusion in (120).

Furthermore, for each k ∈ [0, κ̂0], we have

Ck
(102)
⊂

k⋂

j=0

{
j ≤ k :

∥∥∆j

∥∥2
2
≤ C4

√
α3 log

1

α

}
=

k⋃

j=0

{
j ≤ k :

∥∥∆j

∥∥2
2
≤ C4

√
α3 log

1

α

}

=

k−1⋃

j=0

{
j ≤ k :

∥∥∆j

∥∥2
2
≤ C4

√
α3 log

1

α

}

︸ ︷︷ ︸
=Ck−1

⋃{
‖∆k‖22 ≥ C4

√
α3 log

1

α

}

=Ck−1 ∪ Ẽ2,

which implies for each k ∈ [0, κ̂0],

P(Ck) ≤ P(Ck−1) + P(Ẽ2) ≤ P(Ck−1) + α2.

Summing the above equation from k = 1 to κ̂0, we have

P(Cκ̂0
) =P(C0)︸ ︷︷ ︸

=0

+

κ̂0∑

j=1

(
P(Cj)− P(Cj−1)

)

≤κ̂0α
2 ≤

⌊ log
(

1
1−√

ασH0

)

log(1 + α
√
χǫ)

⌋
α2 =

σH0√
χǫ

α
3
2 + o(α

3
2 ), (125)

where P(C0) = 0 since the event C0 =
{
∆0 = 0 > C4

√
α3 log 1

α

}
can not occur. The result of (125)

shows that

P

(
max

{
‖∆k‖2, ‖∆k‖22

}
≥ C4

√
α3 log

1

α

)
≤ σH0√

χǫ
α

3
2 + o(α

3
2 ).

E.7.4 Boundedness of θk+1 − θ̂k+1 (69).

From the previous result, the following happens at less than 1− σH0√
χǫ

α
3
2

∥∥θk+1 − θ̂k+1

∥∥
2

(69)
≤ α

k∑

j=0

‖∆j‖2 ≤ακ̂0C4

√
α3 log

1

α
= α

√
α3 log

1

α

⌊ log
(

1
1−√

ασH0

)

log(1 + α
√
χǫ)

⌋
C4

=α2

√
log

1

α

σH0√
χǫ

C4 + o
(
α2

√
log

1

α

)
. (126)

This concludes the proof.
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E.8 Proof of Proposition 2

Recall Assumption 2: H(θ) =: ∇2J(θ) is χ-Hessian-Lipschitz, then for any θ, θ0, we have

J(θ) ≥ J(θ0) +∇J(θ0)
⊤(θ − θ0) +

1

2
(θ − θ0)

⊤H0(θ − θ0)−
χ

6
‖θ0 − θ‖32. (127)

Let φ̂ = θ̂k+1 − θ0 = θ̂k+1 − θ̂0 and φ = θk+1 − θ̂k+1, after some careful calculations, we can rewrite
above equation (127) as follows,

J(θk+1)− J(θ0) ≥ J1 + J2,

where J1 = ∇J(θ0)
⊤φ̂+

1

2
φ̂⊤H0φ̂, J2 = ∇J(θ0)

⊤φ+ φ̂⊤H0φ+
1

2
φ⊤H0φ− χ

6
‖φ̂+ φ‖32.

Firstly, we show the lower-boundedness of the expectation of J1.

Since J1 = ∇J(θ0)
⊤φ̂+

1

2
φ̂⊤H0φ̂, we bound ∇J(θ0)

⊤φ̂ at first, then bound
1

2
φ̂⊤H0φ̂.

Recall the result of (65), since θ̂0 = θ0, then we have

∇J(θ0)
⊤φ̂ = ∇J(θ0)

⊤(θ̂k+1 − θ0)

=α

k∑

j=0

∇J(θ̂0)
⊤(I + αH0)

j∇J(θ̂0) + α

k∑

j=0

∇J(θ̂0)
⊤(I + αH0)

k−j
(
ξ̂j + ξ0

)
. (128)

Furthermore, there exists an orthogonal matrix Q ∈ Rp×p (i.e., Q⊤Q = I), s.t., Q⊤H0Q =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λp,


 ⇒ Q⊤(I + αH0)

jQ =




(1 + αλ1)
j 0 · · · 0

0 (1 + αλ2)
j · · · 0

...
...

. . .
...

0 0 0 (1 + αλp)
j


 . Let Q =

(u1, u2, · · · , up), then we have (I + αH0)
j =

∑p
i=1(1 + αλi)

juiu
⊤
i . In fact, with some simple linear

algebra, we know ui is the unit eigenvector with respect to the eigenvalue λi correspondingly. Since
then, we can rewrite the first term of (128) as follows,

∇J(θ̂0)
⊤(I + αH0)

j∇J(θ̂0) =

p∑

i=1

(1 + αλi)
j∇J(θ̂0)

⊤uiu
⊤
i ∇J(θ̂0) =

p∑

i=1

(1 + αλi)
je2i , (129)

where ei =: u⊤i ∇J(θ̂0) = u⊤i ∇J(θ0) = u⊤i E[g(θ0)] = E[u⊤i g(θ0)], since we set the initial θ̂0 = θ0.

Recall H0up = λpup, i.e., up = λ−1
p H0up, and ‖up‖2 = 1, which implies λp ≤ ‖H0‖op. Recall
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g(θk) =: g(θk|τk) =
∑h

t=0 ∇ log πθ(at|st)R(τk)|θ=θk , then we have

E[e2p] = E
[
(u⊤p g(θ0))

2
]
= E

[(
u⊤p

h∑

t=0

∇ log πθ(at|st)R(τk)|θ=θ0

)2]

≥ R2
min

(1− γ)2
E

[(
u⊤p

h∑

t=0

∇θ log πθ(at|st)
)2]

≥ R2
min

(1− γ)2
E

([ h∑

t=0

(u⊤p ∇θ log πθ(at|st))2
]

+ 2E
[ ∑

0≤i<j≤h

u⊤p ∇θ log πθ(ai|si)u⊤p ∇θ log πθ(aj |sj)
])

(130)

=
R2

min

(1− γ)2
E

([ h∑

t=0

u⊤p ∇θ log πθ(at|st)∇⊤
θ log πθ(at|st)up

]

+ 2E
[ ∑

0≤i<j≤h

u⊤p ∇θ log πθ(ai|si)u⊤p ∇θ log πθ(aj |sj)
])

≥ R2
minhω

(1− γ)2
+ 2

R2
min

(1 − γ)2
E

[ ∑

0≤i<j≤h

(λ−1
p H0up)

⊤∇θ log πθ(ai|si)(λ−1
p H0up)

⊤∇θ log πθ(aj |sj)
]

≥ R2
minhω

(1− γ)2
+

2R2
min

(1− γ)2‖H0‖2op
E

[ ∑

0≤i<j≤h

(H0up)
⊤∇θ log πθ(ai|si)(H0up)

⊤∇θ log πθ(aj |sj)
]

=
R2

minhω

(1− γ)2
+

2R2
minλ

2
p

(1− γ)2‖H0‖2op
E

[ ∑

0≤i<j≤h

∇⊤
θ log πθ(ai|si)∇θ log πθ(aj |sj)

]
, (131)

where Eq.(130) holds since a simple fact: (
∑h

t=0 xt)
2 =

∑h
t=0 x

2
t + 2

∑
0≤i<j≤h xixj .

Discussion 1. Now, we discuss the lower boundedness of (131), we introduce a notation c0 as flows,

c0 =: E
[ ∑

0≤i<j≤h

∇⊤
θ log πθ(ai|si)∇θ log πθ(aj |sj),

]

if c0 ≥ 0, the result of (131) shows that

E[e2p] = E
[
(u⊤p g(θ0))

2
]
= E[〈g(τ |θ), up〉2] ≥

R2
minhω

(1− γ)2
;

if c0 < 0, since λp ≥
√
χǫ, if we require (131) keep positive, then we have a small ǫ s.t.,

ǫ ≤
hω‖H0‖2op

χ|c0|
.

Then, for a small enough ǫ, we have the lower boundedness of the term E[〈g(τ |θ), up〉2] as follows,

E[〈g(τ |θ), up〉2] ≥ min
{R2

minhω

(1− γ)2
,
R2

minhω

(1− γ)2
+

2R2
minλ

2
p

(1− γ)2‖H0‖2op
c0

}
=: ι2. (132)
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Now, we consider ∇J(θ0)
⊤φ̂, for an enough small 0 < α < max{ 1

|λ1| ,
1
λp
}, we have

E[∇J(θ0)
⊤φ̂]

(129)
= α

T∑

j=0

p∑

i=1

(1 + αλi)
j
E[e2i ] + α

T∑

j=0

∇J(θ̂0)
⊤(I + αH0)

k−j
E
[(
ξ̂j + ξ0

)]

≥α
T∑

j=0

(1 + αλp)
j
E[e2p] ≥ α(1 + α

√
χǫ)ι2. (133)

For the term
1

2
φ̂⊤H0φ̂, we have,

1

2
|φ̂⊤H0φ̂| ≤

1

2
Λ‖φ̂‖22 ≤ Λα2C2

2 (134)

Secondly, we bound the expectation of J2.

We define an event Dk as follows,

Dk =

k⋂

j=0

{
‖θj − θ̂j‖2 ≤ α2

√
log

1

α

σH0√
χǫ

C4, and ‖θ̂j − θ̂0
∥∥
2
≤ αC2

}
,

from the result of Lemma 10 and Lemma 12, for each k ∈ [0, κ̂0], we have

P(Dk) ≥ 1−min
{
δ,

σH0√
χǫ

α
3
2

}
.

Recall J2 = ∇J(θ0)
⊤φ+ φ̂⊤H0φ+

1

2
φ⊤H0φ−

χ

6
‖φ̂+φ‖32, we need to bound all the terms of J2 with

high probability, In fact,

∣∣∇J(θ0)
⊤φ
∣∣ ≤ ǫ

∥∥θT − θ̂T
∥∥
2

(126)
≤ α2

√
log

1

α

√
ǫ

χ
σH0C4 + o

(√
ǫ

χ
α2

√
log

1

α

)
(135)

∣∣φ̂⊤H0φ
∣∣ ≤

∥∥φ̂
∥∥
2

∥∥H0

∥∥
op

∥∥φ
∥∥
2

(91),(126)
≤ Λα

√
α3 log

1

α

⌊ log
(

1
1−√

ασH0

)

log(1 + α
√
χǫ)

⌋
C4αC2

=α3

√
log

1

α

σH0√
χǫ

ΛC2C4 + o
(
α3

√
log

1

α
· 1√

χǫ

)
, (136)

∣∣1
2
φ⊤H0φ

∣∣ ≤ 1

2

∥∥φ
∥∥
2

∥∥H0

∥∥
op

∥∥φ
∥∥
2

(126)
≤ 1

2χǫ
Λ2α4 log

1

α
σ2
H0

C2
4 + o

(
1

χǫ
α4log

1

α

)
(137)

χ

6
‖φ̂+ φ‖32 ≤

χ

6

(√
α3 log

1

α

⌊ log
(

1
1−√

ασH0

)

log(1 + α
√
χǫ)

⌋
C4 + αC2

)3

=
χ

6
α3C3

4 + o(α3). (138)

From the results of (135)-(138), for a enough small α, we have

J21Dk
≤ α2

√
log

1

α

√
ǫ

χ
σH0C4 + o

(√ ǫ

χ
α2

√
log

1

α

)
,
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which implies

E[J21Dk
] ≤ α2

√
log

1

α

√
ǫ

χ
σH0C4 + o

(√
ǫ

χ
α2

√
log

1

α

)
. (139)

Furthermore, from the result of (65), (69), it is easy to show ‖θk − θ̂k‖2 ≤ O(1), ‖θk − θ̂0‖2 ≤ O(1),
which implies

E[J21Dk
] ≤ min

{
δ,

σH0√
χǫ

α
3
2

}
. (140)

By the results of (139) and (140), the lower boundedness of E[J2] reaches

E[J2] ≥ −α2

√
log

1

α

√
ǫ

χ
σH0C4 −min

{
δ,

σH0√
χǫ

α
3
2

}
= O

(
−min

{
δ,

σH0√
χǫ

α
3
2

})
.

Combining above result with (133), we have

E[J(θT )]− J(θ0) ≥ E[J1] + E[J2]

≥ α(1 + α
√
χǫ)ι2 − Λα2C2

2 −O
(
min

{
δ,

σH0√
χǫ

α
3
2

})

≥ α2ι2
√
χǫ, (141)

the last (141) holds since we chose a proper step-size satifies

αι2 − Λα2C2
2 −O

(
min

{
δ,

σH0√
χǫ

α
3
2

})
> 0, (142)

for a small α, Eq.(142) always exiits. Concretely, if δ >
σH0√
χǫ
α

3
2 , then we can chose step as follows,

√
α <

σH0√
χǫ

+
√

(
σH0√
χǫ
)2 + 4ΛC2

2 ι
2

aΛC2
2

; (143)

otherwise, if δ ≤ σH0√
χǫ
α

3
2 , we can chose step as follows,

αι2 − Λα2C2
2 − δ ≥ αι2 − Λα2C2

2 − σH0√
χǫ

α
3
2 > 0,

which implies same condition as Eq.(143).
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